論文の概要: Ensemble Conformalized Quantile Regression for Probabilistic Time Series
Forecasting
- arxiv url: http://arxiv.org/abs/2202.08756v1
- Date: Thu, 17 Feb 2022 16:54:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-18 15:53:35.907208
- Title: Ensemble Conformalized Quantile Regression for Probabilistic Time Series
Forecasting
- Title(参考訳): 確率時系列予測のためのアンサンブル等角化分位回帰
- Authors: Vilde Jensen, Filippo Maria Bianchi, Stian Norman Anfinsen
- Abstract要約: 本稿では,アンサンブル共形量子化回帰(EnCQR)と呼ばれる新しい確率予測手法を提案する。
EnCQRは、分布のないほぼ妥当な予測間隔(PI)を構築し、非定常およびヘテロセダスティック時系列データに適しており、任意の予測モデルの上に適用することができる。
その結果、EnCQRは量子レグレッションやコンフォメーション予測のみに基づくモデルよりも優れており、よりシャープで、より情報的で、有効なPIを提供することが示された。
- 参考スコア(独自算出の注目度): 4.716034416800441
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel probabilistic forecasting method called ensemble
conformalized quantile regression (EnCQR). EnCQR constructs distribution-free
and approximately marginally valid prediction intervals (PIs), is suitable for
nonstationary and heteroscedastic time series data, and can be applied on top
of any forecasting model, including deep learning architectures that are
trained on long data sequences. EnCQR exploits a bootstrap ensemble estimator,
which enables the use of conformal predictors for time series by removing the
requirement of data exchangeability. The ensemble learners are implemented as
generic machine learning algorithms performing quantile regression, which allow
the length of the PIs to adapt to local variability in the data. In the
experiments, we predict time series characterized by a different amount of
heteroscedasticity. The results demonstrate that EnCQR outperforms models based
only on quantile regression or conformal prediction, and it provides sharper,
more informative, and valid PIs.
- Abstract(参考訳): 本稿では,アンサンブル共形量子回帰(EnCQR)と呼ばれる新しい確率予測手法を提案する。
EnCQRは、分布のないほぼ妥当な予測間隔(PI)を構築し、非定常およびヘテロセダスティック時系列データに適しており、長いデータシーケンスでトレーニングされたディープラーニングアーキテクチャを含むあらゆる予測モデルに適用することができる。
EnCQRはブートストラップアンサンブル推定器を利用して、データ交換性の必要性を取り除くことで、時系列に共形予測器を使用できる。
アンサンブル学習者は、定量回帰を実行する汎用機械学習アルゴリズムとして実装され、PIの長さがデータの局所的変動に適応できるようにする。
実験では,異なるヘテロシドキシーによって特徴付けられる時系列を予測した。
その結果、encqrは量的回帰や共形予測のみに基づくモデルよりも優れており、より鋭く、より有益で、有効なpiを提供する。
関連論文リスト
- Semiparametric conformal prediction [79.6147286161434]
リスクに敏感なアプリケーションは、複数の、潜在的に相関したターゲット変数に対して、よく校正された予測セットを必要とする。
スコアをランダムなベクトルとして扱い、それらの連接関係構造を考慮した予測セットを構築することを目的とする。
実世界のレグレッション問題に対して,所望のカバレッジと競争効率について報告する。
論文 参考訳(メタデータ) (2024-11-04T14:29:02Z) - Risk and cross validation in ridge regression with correlated samples [72.59731158970894]
我々は,データポイントが任意の相関関係を持つ場合,リッジ回帰のイン・オブ・サンプルリスクのトレーニング例を提供する。
さらに、テストポイントがトレーニングセットと非自明な相関を持ち、時系列予測で頻繁に発生するような場合まで分析を拡張します。
我々は多種多様な高次元データにまたがって理論を検証する。
論文 参考訳(メタデータ) (2024-08-08T17:27:29Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
本稿では,マルチグラインド相関に基づく予測ネットワークを提案する。
予測性能を高めるために3段階の相関を同時に検討する。
注意機構に基づく予測器と条件判別器を用いて、粗い粒度の予測結果を最適化する。
論文 参考訳(メタデータ) (2024-05-30T03:32:44Z) - A general framework for multi-step ahead adaptive conformal
heteroscedastic time series forecasting [0.0]
本稿では,適応アンサンブルバッチ多出力多出力共形量子化回帰(AEnbMIMOCQR)と呼ばれる新しいモデル非依存アルゴリズムを提案する。
これにより、予測者は、固定された特定された誤発見率に対して、分布のない方法で、複数段階の事前予測間隔を生成できる。
本手法は, 整合予測の原理に基づいているが, データの分割は不要であり, データの交換ができない場合でも, ほぼ正確なカバレッジを提供する。
論文 参考訳(メタデータ) (2022-07-28T16:40:26Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - MECATS: Mixture-of-Experts for Quantile Forecasts of Aggregated Time
Series [11.826510794042548]
我々はtexttMECATS という異種の専門家フレームワークを混合して導入する。
集約階層を通じて関連付けられた時系列の集合の値を同時に予測する。
異なる種類の予測モデルを個別の専門家として使用することで、各モデルの形式を対応する時系列の性質に合わせて調整することができる。
論文 参考訳(メタデータ) (2021-12-22T05:05:30Z) - Meta-Forecasting by combining Global DeepRepresentations with Local
Adaptation [12.747008878068314]
メタグローバルローカル自動回帰(Meta-GLAR)と呼ばれる新しい予測手法を導入する。
それは、リカレントニューラルネットワーク(RNN)によって生成された表現からワンステップアヘッド予測へのマッピングをクローズドフォームで学習することで、各時系列に適応する。
本手法は,先行研究で報告されたサンプル外予測精度において,最先端の手法と競合する。
論文 参考訳(メタデータ) (2021-11-05T11:45:02Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
本稿では,高次元時系列データを予測するための3段階フレームワークを提案する。
当社のフレームワークは非常に汎用的で,各ステップで時系列予測やクラスタリングが利用可能です。
単純な線形自己回帰モデルでインスタンス化されると、いくつかのベンチマークデータセットで最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-10-26T20:41:19Z) - Global Models for Time Series Forecasting: A Simulation Study [2.580765958706854]
自動回帰(AR)や季節ARのような単純なデータ生成プロセス(DGP)からカオスロジスティックマップ、自己興奮型閾値自動回帰、マッキーグラス方程式といった複雑なDGPまで、時系列をシミュレートする。
データセットの長さと系列数は、さまざまなシナリオで変化します。
我々はこれらのデータセットに対して,Recurrent Neural Networks (RNN), Feed-Forward Neural Networks, Pooled Regression (PR) Model, Light Gradient Boosting Models (LGBM)などの大域的予測モデルを用いて実験を行った。
論文 参考訳(メタデータ) (2020-12-23T04:45:52Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。