Tutorial: Macroscopic QED and vacuum forces
- URL: http://arxiv.org/abs/2202.08762v1
- Date: Thu, 17 Feb 2022 17:02:54 GMT
- Title: Tutorial: Macroscopic QED and vacuum forces
- Authors: S. A. R. Horsley
- Abstract summary: This tutorial introduces the theory of macroscopic QED, where a Hamiltonian is found that represents the electromagnetic field interacting with a dispersive, dissipative material.
We finish by applying macroscopic QED to reproduce Pendry's expression for the quantum friction force between sliding plates.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This tutorial introduces the theory of macroscopic QED, where a Hamiltonian
is found that represents the electromagnetic field interacting with a
dispersive, dissipative material. Using a one dimensional theory as motivation,
we build up the more cumbersome three dimensional theory. Then considering the
extension of this theory to moving materials, where the material response
changes due to both the Doppler effect and the mixing of electric and magnetic
responses, it is shown that one gets the theory of quantum electromagnetic
forces for free. We finish by applying macroscopic QED to reproduce Pendry's
expression for the quantum friction force between sliding plates.
Related papers
- Linear response theory for cavity QED materials [41.94295877935867]
We derive closed formulas for various responses of both the cavity and the matter.
We discover novel excitations in quantum magnets, where the cavity binds magnon pairs into localized states.
arXiv Detail & Related papers (2024-06-17T18:00:01Z) - Lecture Notes on Quantum Electrical Circuits [49.86749884231445]
Theory of quantum electrical circuits goes under the name of circuit quantum electrodynamics or circuit-QED.
The goal of the theory is to provide a quantum description of the most relevant degrees of freedom.
These lecture notes aim at giving a pedagogical overview of this subject for theoretically-oriented Master or PhD students in physics and electrical engineering.
arXiv Detail & Related papers (2023-12-08T19:26:34Z) - Cavity Moiré Materials: Controlling Magnetic Frustration with Quantum Light-Matter Interaction [0.0]
We develop a theory of moir'e materials confined in a cavity consisting of thin polar van der Waals crystals.
Nontrivial quantum geometry of moir'e flat bands leads to electromagnetic vacuum dressing of electrons.
Results indicate that the cavity confinement enables one to control magnetic frustration of moir'e materials.
arXiv Detail & Related papers (2023-02-22T19:00:01Z) - Polariton-Assisted Resonance Energy Transfer Beyond Resonant
Dipole-Dipole Interaction: A Transition Current Density Approach [0.0]
We develop a unified theory of radiative and non-radiative resonance energy transfer based on transition current density.
The proposed theory allows us to describe polariton-assisted resonance energy transfer between two entities with arbitrary material structures.
arXiv Detail & Related papers (2022-09-23T14:49:54Z) - About non-relativistic quantum mechanics and electromagnetism [0.0]
We use the mathematical frame of the field theory and its quantization in the spirit of the quantum-mechanical many-body theory.
We show some examples of the importance of this extension of the many-body theory.
arXiv Detail & Related papers (2022-07-27T05:05:27Z) - An interpretation for Aharonov-Bohm effect with classical
electromagnetic theory [0.0]
The magnetic Aharonov-Bohm effect shows that charged particles may be affected by the vector potential in regions without any electric or magnetic fields.
A common explanation is based on quantum mechanics, which states that the wavefunctions associated with the charges will accumulate a phase shift due to the vector potential.
We propose a simple but reasonable interpretation based on the theory for electromagnetic radiation and couplings.
arXiv Detail & Related papers (2022-01-26T02:04:08Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Motion-induced radiation due to an atom in the presence of a graphene
plane [62.997667081978825]
We study the motion-induced radiation due to the non-relativistic motion of an atom in the presence of a static graphene plate.
We show that the effect of the plate is to increase the probability of emission when the atom is near the plate and oscillates along a direction perpendicular to it.
arXiv Detail & Related papers (2021-04-15T14:15:23Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.