Rydberg atom-based field sensing enhancement using a split-ring
resonator
- URL: http://arxiv.org/abs/2202.08954v1
- Date: Fri, 18 Feb 2022 01:44:56 GMT
- Title: Rydberg atom-based field sensing enhancement using a split-ring
resonator
- Authors: Christopher L. Holloway, Nikunjkumar Prajapati, Alexandra B.
Artusio-Glimpse, Samuel Berweger, Yoshiaki Kasahara, Andrea Alu, and Richard
W. Ziolkowski
- Abstract summary: We investigate the use of a split-ring resonator incorporated with an atomic-vapor cell to improve sensitivity and the minimal detectable electric field of Rydberg atom-based sensors.
By combining EIT with a heterodyne Rydberg atom-based mixer approach, the SRR allows for the a sensitivity of 5.5$mu$V/m$sqrtrm Hz$, which is two-orders of magnitude improvement in sensitivity than when the SRR is not used.
- Score: 50.591267188664666
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the use of a split-ring resonator (SRR) incorporated with an
atomic-vapor cell to improve the sensitivity and the minimal detectable
electric (E) field of Rydberg atom-based sensors. In this approach, a
sub-wavelength SRR is placed around an atomic vapor-cell filled with cesium
atoms for E-field measurements at 1.3~GHz. The SRR provides a factor of 100 in
the enhancement of the E-field measurement sensitivity. Using
electromagnetically induced transparency (EIT) with Aulter-Townes splitting,
E-field measurements down to 5~mV/m are demonstrated with the SRR, while in the
absence of the SRR, the minimal detectable field is 500~mV/m. We demonstrate
that by combining EIT with a heterodyne Rydberg atom-based mixer approach, the
SRR allows for the a sensitivity of 5.5~$\mu$V/m$\sqrt{{\rm Hz}}$, which is
two-orders of magnitude improvement in sensitivity than when the SRR is not
used.
Related papers
- Rydberg Atomic Quantum Receivers for Classical Wireless Communication and Sensing [71.94873601156017]
Rydberg atomic quantum receiver (RAQR) is designed for receiving radio frequency (RF) signals.
RAQRs exhibit compelling scalability and lend themselves to the construction of innovative, compact receivers.
arXiv Detail & Related papers (2024-09-22T15:55:02Z) - Low-loss Millimeter-wave Resonators with an Improved Coupling Structure [39.76747788992184]
Millimeter-wave superconducting resonators are a useful tool for studying quantum device coherence in a new frequency domain.
We develop and characterize a tapered transition structure coupling a rectangular waveguide to a planar slotline waveguide with better than 0.5 dB efficiency over 14 GHz.
Having decoupled the resonators from radiative losses, we consistently achieve single-photon quality factors above $105$, with a two-level-system loss limit above $106$.
arXiv Detail & Related papers (2023-11-03T02:26:44Z) - High angular momentum coupling for enhanced Rydberg-atom sensing in the
VHF band [33.45861095003339]
This letter documents a series of experiments with Rydberg atomic sensors to collect and process waveforms from the automated identification system (AIS) used in maritime navigation in the Very High Frequency (VHF) band.
We show the results from a new method called High Angular Momentum Matching Excited Raman (HAMMER), which enhances low frequency detection and exhibits superior sensitivity compared to the traditional AC Stark effect.
arXiv Detail & Related papers (2023-10-03T05:53:54Z) - Sensitivity Comparison of Two-photon vs Three-photon Rydberg
Electrometry [45.82374977939355]
We model the 4-level and 5-level atomic system and compare how the transmission of the probe changes with different powers of the lasers used and strengths of the RF field.
We find that the three-photon system boasts much narrower line widths compared to the conventional two-photon EIT.
In addition to this, we calculate the expected sensitivity for the two-photon Rydberg sensor and find that the best achievable sensitivity is over an order of magnitude better than the current measured values of 5 uV/m/Hz.
arXiv Detail & Related papers (2022-11-21T20:46:24Z) - In-situ amplification of spin echoes within a kinetic inductance
parametric amplifier [0.0]
Superconducting micro-resonators in combination with quantum-limited Josephson parametric amplifiers lead to more than four orders of magnitude improvement in sensitivity of pulsed Electron Spin Resonance (ESR) measurements.
We present a technique for coupling an ensemble of spins directly to a weakly nonlinear microwave resonator, which is engineered from a magnetic field-resilient thin superconducting film.
We perform pulsed ESR measurements with a $1$pL effective mode volume and amplify the resulting spin signal using the same device, achieving a sensitivity of $2.8 times 103$ spins in a single-shot Hahn echo measurement at a temperature of 400
arXiv Detail & Related papers (2022-11-21T10:36:41Z) - Comparison of Noise Temperature of Rydberg-Atom and Electronic Microwave
Receivers [0.0]
We show that conventional room-temperature electronic receivers greatly outperform the best demonstrated sensitivities of room-temperature Rydberg electrometers.
Rydberg-atom receivers can surpass the sensitivity of conventional receivers if resonant or confining microwave structures are designed to enhance the electric fields sensed by the atoms.
arXiv Detail & Related papers (2022-09-02T09:35:56Z) - Temperature Sensing with RF-Dressed States of Nitrogen-Vacancy Centers
in Diamond [0.0]
Nitrogen vacancy (NV) centers in diamond are promising systems for realizing sensitive temperature sensors.
We propose a novel method to measure temperature using CW-ODMR with a quantum state dressed by radio-frequency (RF) fields under transverse magnetic fields.
arXiv Detail & Related papers (2022-05-14T05:38:22Z) - Investigation and comparison of measurement schemes in the low frequency
biosensing regime using solid-state defect centers [58.720142291102135]
Solid state defects in diamond make promising quantum sensors with high sensitivity andtemporal resolution.
Inhomogeneous broadening and drive amplitude variations have differing impacts on the sensitivity depending on the sensing scheme used.
We numerically investigate and compare the predicted sensitivity of schemes based on continuous-wave (CW) optically detected magnetic resonance (ODMR) spectroscopy, pi-pulse ODMR and Ramsey interferometry.
arXiv Detail & Related papers (2021-09-27T13:05:23Z) - Microwave electrometry via electromagnetically induced absorption in
cold Rydberg atoms [9.897318014645432]
Direct International System of Units (SI)-traceable and self-calibrated method for measuring a microwave electric field strength based on electromagnetically induced absorption (EIA) in cold Rydberg atoms.
A narrower linewidth of cold Rydberg EIA enables us to realize a direct SI-traceable microwave-electric-field measurement as small as $sim$100.
arXiv Detail & Related papers (2020-02-03T16:04:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.