Rethinking Pareto Frontier for Performance Evaluation of Deep Neural
Networks
- URL: http://arxiv.org/abs/2202.09275v1
- Date: Fri, 18 Feb 2022 15:58:17 GMT
- Title: Rethinking Pareto Frontier for Performance Evaluation of Deep Neural
Networks
- Authors: Vahid Partovi Nia, Alireza Ghaffari, Mahdi Zolnouri and Yvon Savaria
- Abstract summary: We re-define the efficiency measure using a multi-objective optimization.
We combine competing variables with nature simultaneously in a single relative efficiency measure.
This allows to rank deep models that run efficiently on different computing hardware, and combines inference efficiency with training efficiency objectively.
- Score: 2.167843405313757
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent efforts in deep learning show a considerable advancement in
redesigning deep learning models for low-resource and edge devices. The
performance optimization of deep learning models are conducted either manually
or through automatic architecture search, or a combination of both. The
throughput and power consumption of deep learning models strongly depend on the
target hardware. We propose to use a \emph{multi-dimensional} Pareto frontier
to re-define the efficiency measure using a multi-objective optimization, where
other variables such as power consumption, latency, and accuracy play a
relative role in defining a dominant model. Furthermore, a random version of
the multi-dimensional Pareto frontier is introduced to mitigate the uncertainty
of accuracy, latency, and throughput variations of deep learning models in
different experimental setups. These two breakthroughs provide an objective
benchmarking method for a wide range of deep learning models. We run our novel
multi-dimensional stochastic relative efficiency on a wide range of deep image
classification models trained ImageNet data. Thank to this new approach we
combine competing variables with stochastic nature simultaneously in a single
relative efficiency measure. This allows to rank deep models that run
efficiently on different computing hardware, and combines inference efficiency
with training efficiency objectively.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
Solving multi-objective optimization problems for large deep neural networks is a challenging task due to the complexity of the loss landscape and the expensive computational cost.
We propose a practical and scalable approach to solve this problem via mixture of experts (MoE) based model fusion.
By ensembling the weights of specialized single-task models, the MoE module can effectively capture the trade-offs between multiple objectives.
arXiv Detail & Related papers (2024-06-14T07:16:18Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Do deep neural networks utilize the weight space efficiently? [2.9914612342004503]
Deep learning models like Transformers and Convolutional Neural Networks (CNNs) have revolutionized various domains, but their parameter-intensive nature hampers deployment in resource-constrained settings.
We introduce a novel concept utilizing column space and row space of weight matrices, which allows for a substantial reduction in model parameters without compromising performance.
Our approach applies to both Bottleneck and Attention layers, effectively halving the parameters while incurring only minor performance degradation.
arXiv Detail & Related papers (2024-01-26T21:51:49Z) - Optimizing Dense Feed-Forward Neural Networks [0.0]
We propose a novel feed-forward neural network constructing method based on pruning and transfer learning.
Our approach can compress the number of parameters by more than 70%.
We also evaluate the transfer learning level comparing the refined model and the original one training from scratch a neural network.
arXiv Detail & Related papers (2023-12-16T23:23:16Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - HCE: Improving Performance and Efficiency with Heterogeneously
Compressed Neural Network Ensemble [22.065904428696353]
Recent ensemble training method explores different training algorithms or settings on multiple sub-models with the same model architecture.
We propose Heterogeneously Compressed Ensemble (HCE), where we build an efficient ensemble with the pruned and quantized variants from a pretrained DNN model.
arXiv Detail & Related papers (2023-01-18T21:47:05Z) - Consistency Training of Multi-exit Architectures for Sensor Data [0.07614628596146598]
We present a novel and architecture-agnostic approach for robust training of multi-exit architectures termed consistent exit training.
We leverage weak supervision to align model output with consistency training and jointly optimize dual-losses in a multi-task learning fashion over the exits in a network.
arXiv Detail & Related papers (2021-09-27T17:11:25Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.