Do deep neural networks utilize the weight space efficiently?
- URL: http://arxiv.org/abs/2401.16438v1
- Date: Fri, 26 Jan 2024 21:51:49 GMT
- Title: Do deep neural networks utilize the weight space efficiently?
- Authors: Onur Can Koyun, Beh\c{c}et U\u{g}ur T\"oreyin
- Abstract summary: Deep learning models like Transformers and Convolutional Neural Networks (CNNs) have revolutionized various domains, but their parameter-intensive nature hampers deployment in resource-constrained settings.
We introduce a novel concept utilizing column space and row space of weight matrices, which allows for a substantial reduction in model parameters without compromising performance.
Our approach applies to both Bottleneck and Attention layers, effectively halving the parameters while incurring only minor performance degradation.
- Score: 2.9914612342004503
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep learning models like Transformers and Convolutional Neural Networks
(CNNs) have revolutionized various domains, but their parameter-intensive
nature hampers deployment in resource-constrained settings. In this paper, we
introduce a novel concept utilizes column space and row space of weight
matrices, which allows for a substantial reduction in model parameters without
compromising performance. Leveraging this paradigm, we achieve
parameter-efficient deep learning models.. Our approach applies to both
Bottleneck and Attention layers, effectively halving the parameters while
incurring only minor performance degradation. Extensive experiments conducted
on the ImageNet dataset with ViT and ResNet50 demonstrate the effectiveness of
our method, showcasing competitive performance when compared to traditional
models. This approach not only addresses the pressing demand for parameter
efficient deep learning solutions but also holds great promise for practical
deployment in real-world scenarios.
Related papers
- SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.
We propose a novel model fine-tuning method to make full use of these ineffective parameters.
Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - Compressible Dynamics in Deep Overparameterized Low-Rank Learning & Adaptation [12.07880147193174]
We show that by leveraging the inherent low-dimensional structures of data and compressible dynamics within the model parameters, we can reap the benefits of over parameterization without the computational burdens.
We demonstrate the effectiveness of this approach for deep low-rank matrix completion as well as fine-tuning language models.
arXiv Detail & Related papers (2024-06-06T14:29:49Z) - Sine Activated Low-Rank Matrices for Parameter Efficient Learning [25.12262017296922]
We propose a novel theoretical framework that integrates a sinusoidal function within the low-rank decomposition process.
Our method proves to be an enhancement for existing low-rank models, as evidenced by its successful application in Vision Transformers (ViT), Large Language Models (LLMs), Neural Radiance Fields (NeRF)
arXiv Detail & Related papers (2024-03-28T08:58:20Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Convolutional Neural Network Compression via Dynamic Parameter Rank
Pruning [4.7027290803102675]
We propose an efficient training method for CNN compression via dynamic parameter rank pruning.
Our experiments show that the proposed method can yield substantial storage savings while maintaining or even enhancing classification performance.
arXiv Detail & Related papers (2024-01-15T23:52:35Z) - Boosting Inference Efficiency: Unleashing the Power of Parameter-Shared
Pre-trained Language Models [109.06052781040916]
We introduce a technique to enhance the inference efficiency of parameter-shared language models.
We also propose a simple pre-training technique that leads to fully or partially shared models.
Results demonstrate the effectiveness of our methods on both autoregressive and autoencoding PLMs.
arXiv Detail & Related papers (2023-10-19T15:13:58Z) - E^2VPT: An Effective and Efficient Approach for Visual Prompt Tuning [55.50908600818483]
Fine-tuning large-scale pretrained vision models for new tasks has become increasingly parameter-intensive.
We propose an Effective and Efficient Visual Prompt Tuning (E2VPT) approach for large-scale transformer-based model adaptation.
Our approach outperforms several state-of-the-art baselines on two benchmarks.
arXiv Detail & Related papers (2023-07-25T19:03:21Z) - Rethinking Pareto Frontier for Performance Evaluation of Deep Neural
Networks [2.167843405313757]
We re-define the efficiency measure using a multi-objective optimization.
We combine competing variables with nature simultaneously in a single relative efficiency measure.
This allows to rank deep models that run efficiently on different computing hardware, and combines inference efficiency with training efficiency objectively.
arXiv Detail & Related papers (2022-02-18T15:58:17Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
We introduce Powerpropagation, a new weight- parameterisation for neural networks that leads to inherently sparse models.
Models trained in this manner exhibit similar performance, but have a distribution with markedly higher density at zero, allowing more parameters to be pruned safely.
Here, we combine Powerpropagation with a traditional weight-pruning technique as well as recent state-of-the-art sparse-to-sparse algorithms, showing superior performance on the ImageNet benchmark.
arXiv Detail & Related papers (2021-10-01T10:03:57Z) - Parameter-Efficient Transfer from Sequential Behaviors for User Modeling
and Recommendation [111.44445634272235]
In this paper, we develop a parameter efficient transfer learning architecture, termed as PeterRec.
PeterRec allows the pre-trained parameters to remain unaltered during fine-tuning by injecting a series of re-learned neural networks.
We perform extensive experimental ablation to show the effectiveness of the learned user representation in five downstream tasks.
arXiv Detail & Related papers (2020-01-13T14:09:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.