Learning Representations Robust to Group Shifts and Adversarial Examples
- URL: http://arxiv.org/abs/2202.09446v1
- Date: Fri, 18 Feb 2022 22:06:25 GMT
- Title: Learning Representations Robust to Group Shifts and Adversarial Examples
- Authors: Ming-Chang Chiu, Xuezhe Ma
- Abstract summary: We propose an algorithm that combines adversarial training and group distribution robust optimization to improve representation learning.
Experiments on three image benchmark datasets illustrate that the proposed method achieves superior results on robust metrics without sacrificing much of the standard measures.
- Score: 18.742222861886148
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Despite the high performance achieved by deep neural networks on various
tasks, extensive studies have demonstrated that small tweaks in the input could
fail the model predictions. This issue of deep neural networks has led to a
number of methods to improve model robustness, including adversarial training
and distributionally robust optimization. Though both of these two methods are
geared towards learning robust models, they have essentially different
motivations: adversarial training attempts to train deep neural networks
against perturbations, while distributional robust optimization aims at
improving model performance on the most difficult "uncertain distributions". In
this work, we propose an algorithm that combines adversarial training and group
distribution robust optimization to improve robust representation learning.
Experiments on three image benchmark datasets illustrate that the proposed
method achieves superior results on robust metrics without sacrificing much of
the standard measures.
Related papers
- Improving Network Interpretability via Explanation Consistency Evaluation [56.14036428778861]
We propose a framework that acquires more explainable activation heatmaps and simultaneously increase the model performance.
Specifically, our framework introduces a new metric, i.e., explanation consistency, to reweight the training samples adaptively in model learning.
Our framework then promotes the model learning by paying closer attention to those training samples with a high difference in explanations.
arXiv Detail & Related papers (2024-08-08T17:20:08Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - A Comprehensive Study on Robustness of Image Classification Models:
Benchmarking and Rethinking [54.89987482509155]
robustness of deep neural networks is usually lacking under adversarial examples, common corruptions, and distribution shifts.
We establish a comprehensive benchmark robustness called textbfARES-Bench on the image classification task.
By designing the training settings accordingly, we achieve the new state-of-the-art adversarial robustness.
arXiv Detail & Related papers (2023-02-28T04:26:20Z) - Towards Robust Dataset Learning [90.2590325441068]
We propose a principled, tri-level optimization to formulate the robust dataset learning problem.
Under an abstraction model that characterizes robust vs. non-robust features, the proposed method provably learns a robust dataset.
arXiv Detail & Related papers (2022-11-19T17:06:10Z) - Understanding Robust Learning through the Lens of Representation
Similarities [37.66877172364004]
robustness to adversarial examples has emerged as a desirable property for deep neural networks (DNNs)
In this paper, we aim to understand how the properties of representations learned by robust training differ from those obtained from standard, non-robust training.
arXiv Detail & Related papers (2022-06-20T16:06:20Z) - Robust Binary Models by Pruning Randomly-initialized Networks [57.03100916030444]
We propose ways to obtain robust models against adversarial attacks from randomly-d binary networks.
We learn the structure of the robust model by pruning a randomly-d binary network.
Our method confirms the strong lottery ticket hypothesis in the presence of adversarial attacks.
arXiv Detail & Related papers (2022-02-03T00:05:08Z) - Improving Adversarial Robustness by Enforcing Local and Global
Compactness [19.8818435601131]
Adversary training is the most successful method that consistently resists a wide range of attacks.
We propose the Adversary Divergence Reduction Network which enforces local/global compactness and the clustering assumption.
The experimental results demonstrate that augmenting adversarial training with our proposed components can further improve the robustness of the network.
arXiv Detail & Related papers (2020-07-10T00:43:06Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples.
Most existing AT methods adopt a specific attack to craft adversarial examples, leading to the unreliable robustness against other unseen attacks.
In this paper, we introduce adversarial distributional training (ADT), a novel framework for learning robust models.
arXiv Detail & Related papers (2020-02-14T12:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.