Consistent Diffusion Meets Tweedie: Training Exact Ambient Diffusion Models with Noisy Data
- URL: http://arxiv.org/abs/2404.10177v2
- Date: Mon, 22 Jul 2024 11:31:08 GMT
- Title: Consistent Diffusion Meets Tweedie: Training Exact Ambient Diffusion Models with Noisy Data
- Authors: Giannis Daras, Alexandros G. Dimakis, Constantinos Daskalakis,
- Abstract summary: Ambient diffusion is a recently proposed framework for training diffusion models using corrupted data.
We present the first framework for training diffusion models that provably sample from the uncorrupted distribution given only noisy training data.
- Score: 74.2507346810066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ambient diffusion is a recently proposed framework for training diffusion models using corrupted data. Both Ambient Diffusion and alternative SURE-based approaches for learning diffusion models from corrupted data resort to approximations which deteriorate performance. We present the first framework for training diffusion models that provably sample from the uncorrupted distribution given only noisy training data, solving an open problem in this space. Our key technical contribution is a method that uses a double application of Tweedie's formula and a consistency loss function that allows us to extend sampling at noise levels below the observed data noise. We also provide further evidence that diffusion models memorize from their training sets by identifying extremely corrupted images that are almost perfectly reconstructed, raising copyright and privacy concerns. Our method for training using corrupted samples can be used to mitigate this problem. We demonstrate this by fine-tuning Stable Diffusion XL to generate samples from a distribution using only noisy samples. Our framework reduces the amount of memorization of the fine-tuning dataset, while maintaining competitive performance.
Related papers
- Learning Diffusion Model from Noisy Measurement using Principled Expectation-Maximization Method [9.173055778539641]
We propose a principled expectation-maximization (EM) framework that iteratively learns diffusion models from noisy data with arbitrary corruption types.
Our framework employs a plug-and-play Monte Carlo method to accurately estimate clean images from noisy measurements, followed by training the diffusion model using the reconstructed images.
arXiv Detail & Related papers (2024-10-15T03:54:59Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
We develop constrained diffusion models based on desired distributions informed by requirements.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Integrating Amortized Inference with Diffusion Models for Learning Clean Distribution from Corrupted Images [19.957503854446735]
Diffusion models (DMs) have emerged as powerful generative models for solving inverse problems.
FlowDiff is a joint training paradigm that leverages a conditional normalizing flow model to facilitate the training of diffusion models on corrupted data sources.
Our experiment shows that FlowDiff can effectively learn clean distributions across a wide range of corrupted data sources.
arXiv Detail & Related papers (2024-07-15T18:33:20Z) - Ambient Diffusion Posterior Sampling: Solving Inverse Problems with
Diffusion Models trained on Corrupted Data [56.81246107125692]
Ambient Diffusion Posterior Sampling (A-DPS) is a generative model pre-trained on one type of corruption.
We show that A-DPS can sometimes outperform models trained on clean data for several image restoration tasks in both speed and performance.
We extend the Ambient Diffusion framework to train MRI models with access only to Fourier subsampled multi-coil MRI measurements.
arXiv Detail & Related papers (2024-03-13T17:28:20Z) - Improved off-policy training of diffusion samplers [93.66433483772055]
We study the problem of training diffusion models to sample from a distribution with an unnormalized density or energy function.
We benchmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods.
Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work.
arXiv Detail & Related papers (2024-02-07T18:51:49Z) - GSURE-Based Diffusion Model Training with Corrupted Data [35.56267114494076]
We propose a novel training technique for generative diffusion models based only on corrupted data.
We demonstrate our technique on face images as well as Magnetic Resonance Imaging (MRI)
arXiv Detail & Related papers (2023-05-22T15:27:20Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Truncated Diffusion Probabilistic Models and Diffusion-based Adversarial
Auto-Encoders [137.1060633388405]
Diffusion-based generative models learn how to generate the data by inferring a reverse diffusion chain.
We propose a faster and cheaper approach that adds noise not until the data become pure random noise.
We show that the proposed model can be cast as an adversarial auto-encoder empowered by both the diffusion process and a learnable implicit prior.
arXiv Detail & Related papers (2022-02-19T20:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.