Data Augmentation for Seizure Prediction with Generative Diffusion Model
- URL: http://arxiv.org/abs/2306.08256v1
- Date: Wed, 14 Jun 2023 05:44:53 GMT
- Title: Data Augmentation for Seizure Prediction with Generative Diffusion Model
- Authors: Kai Shu, Yuchang Zhao, Le Wu, Aiping Liu, Ruobing Qian, and Xun Chen
- Abstract summary: Seizure prediction is of great importance to improve the life of patients.
The severe imbalance problem between preictal and interictal data still poses a great challenge.
Data augmentation is an intuitive way to solve this problem.
We propose a novel data augmentation method with diffusion model called DiffEEG.
- Score: 26.967247641926814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Objective: Seizure prediction is of great importance to improve the life of
patients. The focal point is to distinguish preictal states from interictal
ones. With the development of machine learning, seizure prediction methods have
achieved significant progress. However, the severe imbalance problem between
preictal and interictal data still poses a great challenge, restricting the
performance of classifiers. Data augmentation is an intuitive way to solve this
problem. Existing data augmentation methods generate samples by overlapping or
recombining data. The distribution of generated samples is limited by original
data, because such transformations cannot fully explore the feature space and
offer new information. As the epileptic EEG representation varies among
seizures, these generated samples cannot provide enough diversity to achieve
high performance on a new seizure. As a consequence, we propose a novel data
augmentation method with diffusion model called DiffEEG. Methods: Diffusion
models are a class of generative models that consist of two processes.
Specifically, in the diffusion process, the model adds noise to the input EEG
sample step by step and converts the noisy sample into output random noise,
exploring the distribution of data by minimizing the loss between the output
and the noise added. In the denoised process, the model samples the synthetic
data by removing the noise gradually, diffusing the data distribution to
outward areas and narrowing the distance between different clusters. Results:
We compared DiffEEG with existing methods, and integrated them into three
representative classifiers. The experiments indicate that DiffEEG could further
improve the performance and shows superiority to existing methods. Conclusion:
This paper proposes a novel and effective method to solve the imbalanced
problem and demonstrates the effectiveness and generality of our method.
Related papers
- CCS: Controllable and Constrained Sampling with Diffusion Models via Initial Noise Perturbation [9.12693573953231]
We first observe an interesting phenomenon: the relationship between the change of generation outputs and the scale of initial noise perturbation is highly linear through the diffusion ODE sampling.
We propose a novel Controllable and Constrained Sampling method (CCS) together with a new controller algorithm for diffusion models to sample with desired statistical properties.
Results show that our CCS method achieves more precisely controlled sampling while maintaining superior sample quality and diversity.
arXiv Detail & Related papers (2025-02-07T05:30:48Z) - Data Augmentation via Diffusion Model to Enhance AI Fairness [1.2979015577834876]
This paper explores the potential of diffusion models to generate synthetic data to improve AI fairness.
The Tabular Denoising Diffusion Probabilistic Model (Tab-DDPM) was utilized with different amounts of generated data for data augmentation.
Experimental results demonstrate that the synthetic data generated by Tab-DDPM improves fairness in binary classification.
arXiv Detail & Related papers (2024-10-20T18:52:31Z) - DiffATR: Diffusion-based Generative Modeling for Audio-Text Retrieval [49.076590578101985]
We present a diffusion-based ATR framework (DiffATR) that generates joint distribution from noise.
Experiments on the AudioCaps and Clotho datasets with superior performances, verify the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-16T06:33:26Z) - Improving EEG Classification Through Randomly Reassembling Original and Generated Data with Transformer-based Diffusion Models [12.703528969668062]
We propose a Transformer-based denoising diffusion probabilistic model and a generated data-based augmentation method.
For the characteristics of EEG signals, we propose a constant-factor scaling method to preprocess the signals, which reduces the loss of information.
The proposed augmentation method randomly reassembles the generated data with original data in the time-domain to obtain vicinal data.
arXiv Detail & Related papers (2024-07-20T06:58:14Z) - Score-based Generative Models with Adaptive Momentum [40.84399531998246]
We propose an adaptive momentum sampling method to accelerate the transforming process.
We show that our method can produce more faithful images/graphs in small sampling steps with 2 to 5 times speed up.
arXiv Detail & Related papers (2024-05-22T15:20:27Z) - Diffusion Models with Deterministic Normalizing Flow Priors [23.212848643552395]
We propose DiNof ($textbfDi$ffusion with $textbfNo$rmalizing $textbff$low priors), a technique that makes use of normalizing flows and diffusion models.
Experiments on standard image generation datasets demonstrate the advantage of the proposed method over existing approaches.
arXiv Detail & Related papers (2023-09-03T21:26:56Z) - Boosting Fast and High-Quality Speech Synthesis with Linear Diffusion [85.54515118077825]
This paper proposes a linear diffusion model (LinDiff) based on an ordinary differential equation to simultaneously reach fast inference and high sample quality.
To reduce computational complexity, LinDiff employs a patch-based processing approach that partitions the input signal into small patches.
Our model can synthesize speech of a quality comparable to that of autoregressive models with faster synthesis speed.
arXiv Detail & Related papers (2023-06-09T07:02:43Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Diffusion-GAN: Training GANs with Diffusion [135.24433011977874]
Generative adversarial networks (GANs) are challenging to train stably.
We propose Diffusion-GAN, a novel GAN framework that leverages a forward diffusion chain to generate instance noise.
We show that Diffusion-GAN can produce more realistic images with higher stability and data efficiency than state-of-the-art GANs.
arXiv Detail & Related papers (2022-06-05T20:45:01Z) - Truncated Diffusion Probabilistic Models and Diffusion-based Adversarial
Auto-Encoders [137.1060633388405]
Diffusion-based generative models learn how to generate the data by inferring a reverse diffusion chain.
We propose a faster and cheaper approach that adds noise not until the data become pure random noise.
We show that the proposed model can be cast as an adversarial auto-encoder empowered by both the diffusion process and a learnable implicit prior.
arXiv Detail & Related papers (2022-02-19T20:18:49Z) - Learning Energy-Based Models by Diffusion Recovery Likelihood [61.069760183331745]
We present a diffusion recovery likelihood method to tractably learn and sample from a sequence of energy-based models.
After training, synthesized images can be generated by the sampling process that initializes from Gaussian white noise distribution.
On unconditional CIFAR-10 our method achieves FID 9.58 and inception score 8.30, superior to the majority of GANs.
arXiv Detail & Related papers (2020-12-15T07:09:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.