論文の概要: Toward More Generalized Malicious URL Detection Models
- arxiv url: http://arxiv.org/abs/2202.10027v2
- Date: Fri, 9 Feb 2024 17:20:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-12 21:30:28.181459
- Title: Toward More Generalized Malicious URL Detection Models
- Title(参考訳): より一般化された悪質URL検出モデルを目指して
- Authors: YunDa Tsai, Cayon Liow, Yin Sheng Siang, Shou-De Lin
- Abstract要約: 本稿では、悪意のあるURL検出のための機械学習モデルを実行中に、パフォーマンスに深刻な影響を及ぼす可能性のあるデータバイアス問題を明らかにする。
このようなバイアスが解釈可能な機械学習技術を用いてどのように識別できるかを説明し、そのようなバイアスが分類モデルを訓練するための現実世界のセキュリティデータに自然に存在することを論じる。
偏りのある特徴から負の効果を緩和するために、多くのディープラーニングベースモデルに適用可能な偏りのあるトレーニング戦略を提案する。
- 参考スコア(独自算出の注目度): 4.151658495779136
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper reveals a data bias issue that can severely affect the performance
while conducting a machine learning model for malicious URL detection. We
describe how such bias can be identified using interpretable machine learning
techniques, and further argue that such biases naturally exist in the real
world security data for training a classification model. We then propose a
debiased training strategy that can be applied to most deep-learning based
models to alleviate the negative effects from the biased features. The solution
is based on the technique of self-supervised adversarial training to train deep
neural networks learning invariant embedding from biased data. We conduct a
wide range of experiments to demonstrate that the proposed strategy can lead to
significantly better generalization capability for both CNN-based and RNN-based
detection models.
- Abstract(参考訳): 本稿では,悪意のあるurl検出のための機械学習モデルを実施しながら,その性能に重大な影響を及ぼすデータバイアス問題を明らかにする。
我々は,このようなバイアスを解釈可能な機械学習手法を用いて識別する方法を説明し,さらに,分類モデルのトレーニングのための実世界のセキュリティデータには,このようなバイアスが自然に存在すると主張する。
次に,多くのディープラーニングモデルに適用可能な偏りのない学習戦略を提案し,偏りのある特徴から悪影響を緩和する。
このソリューションは、偏りのあるデータから不変な埋め込みを学習するディープニューラルネットワークを訓練するための自己教師付き敵訓練の技術に基づいている。
我々は,提案手法がCNNベースおよびRNNベース両方の検出モデルに対して,より優れた一般化能力をもたらすことを示すため,幅広い実験を行った。
関連論文リスト
- Utilizing Adversarial Examples for Bias Mitigation and Accuracy Enhancement [3.0820287240219795]
本稿では,コンピュータビジョンモデルにおけるバイアスを軽減するための新しい手法を提案する。
提案手法は,カリキュラム学習フレームワークと詳細な逆数損失を組み合わせることで,逆数例を用いてモデルを微調整する。
我々は,定性評価と定量的評価を併用し,従来の方法と比較してバイアス緩和と精度の向上を実証した。
論文 参考訳(メタデータ) (2024-04-18T00:41:32Z) - Addressing Bias Through Ensemble Learning and Regularized Fine-Tuning [0.2812395851874055]
本稿では,AIモデルのバイアスを取り除くために,複数の手法を用いた包括的アプローチを提案する。
我々は、データ分割、局所訓練、正規化ファインチューニングを通じて、事前訓練されたモデルのカウンターバイアスで複数のモデルを訓練する。
我々は、単一のバイアスのないニューラルネットワークをもたらす知識蒸留を用いて、ソリューションを結論付けている。
論文 参考訳(メタデータ) (2024-02-01T09:24:36Z) - Improving Bias Mitigation through Bias Experts in Natural Language
Understanding [10.363406065066538]
補助モデルと主モデルの間に二項分類器を導入するデバイアス化フレームワークを提案する。
提案手法は補助モデルのバイアス識別能力を向上させる。
論文 参考訳(メタデータ) (2023-12-06T16:15:00Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
ディープニューラルネットワークは多くの現実世界のシナリオでバイアスのある振る舞いをする。
既存のデバイアス法は、バイアスラベルやモデル再トレーニングのコストが高い。
バイアスを特定し,評価し,除去するための効率的なアプローチを提供する高速モデル脱バイアスフレームワーク(FMD)を提案する。
論文 参考訳(メタデータ) (2023-10-19T08:10:57Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
本稿では,テキスト埋め込みにおけるバイアスのある方向を投影することで,視覚言語基盤モデルを疎外する一般的な手法を提案する。
偏平投影行列を組み込んだテキストのみをデバイアスすることで、ロバストな分類器と公正な生成モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-01-31T20:09:33Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z) - EnD: Entangling and Disentangling deep representations for bias
correction [7.219077740523682]
本稿では,深層モデルが望ましくないバイアスを学習することを防止するための正規化戦略であるEnDを提案する。
特に、深層ニューラルネットワークの特定のポイントに「情報のボトルネック」を挿入し、バイアスに関する情報を分離する。
実験によると、EnDは偏りのないテストセットの一般化を効果的に改善する。
論文 参考訳(メタデータ) (2021-03-02T20:55:42Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
テキスト分類モデルの逆例の転送可能性について検討する。
本稿では,ほとんどすべての既存モデルを騙すために,敵の例を誘導できるモデル群を見つける遺伝的アルゴリズムを提案する。
これらの逆例からモデル診断に使用できる単語置換規則を導出する。
論文 参考訳(メタデータ) (2020-11-17T10:45:05Z) - Learning from Failure: Training Debiased Classifier from Biased
Classifier [76.52804102765931]
ニューラルネットワークは、所望の知識よりも学習が簡単である場合にのみ、素早い相関に依存することを学習していることを示す。
本稿では,一対のニューラルネットワークを同時にトレーニングすることで,障害に基づくデバイアス化手法を提案する。
本手法は,合成データセットと実世界のデータセットの両方において,各種バイアスに対するネットワークのトレーニングを大幅に改善する。
論文 参考訳(メタデータ) (2020-07-06T07:20:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。