論文の概要: Submodlib: A Submodular Optimization Library
- arxiv url: http://arxiv.org/abs/2202.10680v1
- Date: Tue, 22 Feb 2022 05:48:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-23 16:59:18.504461
- Title: Submodlib: A Submodular Optimization Library
- Title(参考訳): Submodlib: サブモジュール最適化ライブラリ
- Authors: Vishal Kaushal, Ganesh Ramakrishnan, Rishabh Iyer
- Abstract要約: Submodlibは、C++最適化エンジンを備えたサブモジュール最適化のためのオープンソースライブラリである。
Submodlibはその応用例として、要約、データサブセットの選択、ハイパーパラメータチューニング、効率的なトレーニングなどがある。
- 参考スコア(独自算出の注目度): 17.596860081700115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Submodular functions are a special class of set functions which naturally
model the notion of representativeness, diversity, coverage etc. and have been
shown to be computationally very efficient. A lot of past work has applied
submodular optimization to find optimal subsets in various contexts. Some
examples include data summarization for efficient human consumption, finding
effective smaller subsets of training data to reduce the model development time
(training, hyper parameter tuning), finding effective subsets of unlabeled data
to reduce the labeling costs, etc. A recent work has also leveraged submodular
functions to propose submodular information measures which have been found to
be very useful in solving the problems of guided subset selection and guided
summarization. In this work, we present Submodlib which is an open-source,
easy-to-use, efficient and scalable Python library for submodular optimization
with a C++ optimization engine. Submodlib finds its application in
summarization, data subset selection, hyper parameter tuning, efficient
training and more. Through a rich API, it offers a great deal of flexibility in
the way it can be used.
- Abstract(参考訳): 部分モジュラ関数は、代表性、多様性、範囲などの概念を自然にモデル化する特別な集合関数のクラスであり、計算学的に非常に効率的であることが示されている。
過去の多くの研究は、様々な文脈で最適な部分集合を見つけるために部分モジュラー最適化を適用してきた。
例えば、効率的な人的消費のためのデータ要約、モデル開発時間(トレーニング、ハイパーパラメータチューニング)を減らすためのトレーニングデータの効果的な小さなサブセットの発見、ラベルなしデータの効果的なサブセットの発見、ラベル付けコストの削減などです。
最近の研究は部分モジュラー関数を利用して、ガイド付き部分集合選択とガイド付き要約の問題を解くのに非常に有用であることが判明した部分モジュラー情報測度を提案する。
本稿では,c++最適化エンジンを用いたサブモジュール最適化のための,オープンソースで使いやすい,効率的,スケーラブルなpythonライブラリであるsubmodlibを提案する。
submodlibは、要約、データサブセット選択、ハイパーパラメータチューニング、効率的なトレーニングなどの分野で応用されている。
リッチなAPIを通じて、使用方法に大きな柔軟性を提供します。
関連論文リスト
- OptiBench Meets ReSocratic: Measure and Improve LLMs for Optimization Modeling [62.19438812624467]
大規模言語モデル (LLM) は数学的推論における問題解決能力を示した。
本稿では,人間可読入力と出力を用いたエンドツーエンド最適化問題のベンチマークであるOptiBenchを提案する。
論文 参考訳(メタデータ) (2024-07-13T13:27:57Z) - AdaLomo: Low-memory Optimization with Adaptive Learning Rate [59.64965955386855]
大規模言語モデルに対する適応学習率(AdaLomo)を用いた低メモリ最適化を提案する。
AdaLomoはAdamWと同等の結果を得ると同時に、メモリ要件を大幅に削減し、大きな言語モデルをトレーニングするためのハードウェア障壁を低くする。
論文 参考訳(メタデータ) (2023-10-16T09:04:28Z) - Maximizing Submodular Functions for Recommendation in the Presence of
Biases [25.081136190260015]
サブセット選択タスクはシステムや検索エンジンで発生し、ユーザの価値を最大化する項目のサブセットを選択するように要求する。
多くの応用において、入力は出力サブセットの有用性を減らす社会的バイアスを持つことが観察されている。
公平性制約に基づく介入は,比例表現の確保だけでなく,バイアスの存在下での準最適性も達成できることを示す。
論文 参考訳(メタデータ) (2023-05-03T15:20:00Z) - MILO: Model-Agnostic Subset Selection Framework for Efficient Model
Training and Tuning [68.12870241637636]
モデル学習からサブセット選択を分離するモデルに依存しないサブセット選択フレームワークMILOを提案する。
実験結果から、MILOはモデルを3ドル(約3,300円)でトレーニングし、ハイパーパラメータを20ドル(約2,300円)でチューニングできます。
論文 参考訳(メタデータ) (2023-01-30T20:59:30Z) - Neural Estimation of Submodular Functions with Applications to
Differentiable Subset Selection [50.14730810124592]
サブモジュール関数と変種は、多様性とカバレッジを特徴付ける能力を通じて、データ選択と要約のための重要なツールとして登場した。
本稿では,モノトーンおよび非モノトーン部分モジュラー関数のためのフレキシブルニューラルネットワークであるFLEXSUBNETを提案する。
論文 参考訳(メタデータ) (2022-10-20T06:00:45Z) - abess: A Fast Best Subset Selection Library in Python and R [1.6208003359512848]
ベストサブセット選択の統一フレームワークを実装したAbessという新しいライブラリを導入する。
アブスは線形モデルの下で時間内に最適解を得る。
ライブラリの中核はC++でプログラムされており、Pythonライブラリインデックスからインストールすることができる。
論文 参考訳(メタデータ) (2021-10-19T02:34:55Z) - Captum: A unified and generic model interpretability library for PyTorch [49.72749684393332]
我々は,PyTorch用の新しい,統一されたオープンソースモデル解釈可能性ライブラリを紹介する。
このライブラリには、多くの勾配と摂動に基づく属性アルゴリズムの汎用的な実装が含まれている。
分類モデルと非分類モデルの両方に使用できる。
論文 参考訳(メタデータ) (2020-09-16T18:57:57Z) - Scalable Combinatorial Bayesian Optimization with Tractable Statistical
models [44.25245545568633]
緩和空間上のブラックボックス関数(集合、列、木、グラフなど)を最適化する問題について検討する。
サブモジュール緩和の最近の進歩に基づき,BOCSモデルにおけるAFO問題のスケーラビリティと精度向上を目標として,Parametrized Submodular (PSR) のアプローチを検討する。
多様なベンチマーク問題に対する実験では、BOCSモデルに対するPSRによる大幅な改善が示されている。
論文 参考訳(メタデータ) (2020-08-18T22:56:46Z) - From Sets to Multisets: Provable Variational Inference for Probabilistic
Integer Submodular Models [82.95892656532696]
サブモジュール関数は機械学習やデータマイニングにおいて広く研究されている。
本研究では,整数部分モジュラ函数に対する連続DR-部分モジュラ拡張を提案する。
整数部分モジュラー関数によって定義される新しい確率モデルを定式化する。
論文 参考訳(メタデータ) (2020-06-01T22:20:45Z) - Flexible numerical optimization with ensmallen [15.78308411537254]
本報告では,数値最適化ライブラリの小型化について紹介する。
このライブラリは、任意のユーザ供給関数を数学的に最適化するための、高速で柔軟なC++フレームワークを提供する。
論文 参考訳(メタデータ) (2020-03-09T12:57:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。