Transporters with Visual Foresight for Solving Unseen Rearrangement
Tasks
- URL: http://arxiv.org/abs/2202.10765v1
- Date: Tue, 22 Feb 2022 09:35:09 GMT
- Title: Transporters with Visual Foresight for Solving Unseen Rearrangement
Tasks
- Authors: Hongtao Wu, Jikai Ye, Xin Meng, Chris Paxton, Gregory Chirikjian
- Abstract summary: Transporters with Visual Foresight (TVF) is able to achieve multi-task learning and zero-shot generalization to unseen tasks.
TVF is able to improve the performance of a state-of-the-art imitation learning method on both training and unseen tasks in simulation and real robot experiments.
- Score: 12.604533231243543
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rearrangement tasks have been identified as a crucial challenge for
intelligent robotic manipulation, but few methods allow for precise
construction of unseen structures. We propose a visual foresight model for
pick-and-place manipulation which is able to learn efficiently. In addition, we
develop a multi-modal action proposal module which builds on Goal-Conditioned
Transporter Networks, a state-of-the-art imitation learning method. Our method,
Transporters with Visual Foresight (TVF), enables task planning from image data
and is able to achieve multi-task learning and zero-shot generalization to
unseen tasks with only a handful of expert demonstrations. TVF is able to
improve the performance of a state-of-the-art imitation learning method on both
training and unseen tasks in simulation and real robot experiments. In
particular, the average success rate on unseen tasks improves from 55.0% to
77.9% in simulation experiments and from 30% to 63.3% in real robot experiments
when given only tens of expert demonstrations. More details can be found on our
project website: https://chirikjianlab.github.io/tvf/
Related papers
- VITAL: Visual Teleoperation to Enhance Robot Learning through Human-in-the-Loop Corrections [10.49712834719005]
We propose a low-cost visual teleoperation system for bimanual manipulation tasks, called VITAL.
Our approach leverages affordable hardware and visual processing techniques to collect demonstrations.
We enhance the generalizability and robustness of the learned policies by utilizing both real and simulated environments.
arXiv Detail & Related papers (2024-07-30T23:29:47Z) - Affordance-Guided Reinforcement Learning via Visual Prompting [51.361977466993345]
Keypoint-based Affordance Guidance for Improvements (KAGI) is a method leveraging rewards shaped by vision-language models (VLMs) for autonomous RL.
On real-world manipulation tasks specified by natural language descriptions, KAGI improves the sample efficiency of autonomous RL and enables successful task completion in 20K online fine-tuning steps.
arXiv Detail & Related papers (2024-07-14T21:41:29Z) - Tactile Active Inference Reinforcement Learning for Efficient Robotic
Manipulation Skill Acquisition [10.072992621244042]
We propose a novel method for skill learning in robotic manipulation called Tactile Active Inference Reinforcement Learning (Tactile-AIRL)
To enhance the performance of reinforcement learning (RL), we introduce active inference, which integrates model-based techniques and intrinsic curiosity into the RL process.
We demonstrate that our method achieves significantly high training efficiency in non-prehensile objects pushing tasks.
arXiv Detail & Related papers (2023-11-19T10:19:22Z) - Mastering Robot Manipulation with Multimodal Prompts through Pretraining and Multi-task Fine-tuning [49.92517970237088]
We tackle the problem of training a robot to understand multimodal prompts.
This type of task poses a major challenge to robots' capability to understand the interconnection and complementarity between vision and language signals.
We introduce an effective framework that learns a policy to perform robot manipulation with multimodal prompts.
arXiv Detail & Related papers (2023-10-14T22:24:58Z) - Hindsight States: Blending Sim and Real Task Elements for Efficient
Reinforcement Learning [61.3506230781327]
In robotics, one approach to generate training data builds on simulations based on dynamics models derived from first principles.
Here, we leverage the imbalance in complexity of the dynamics to learn more sample-efficiently.
We validate our method on several challenging simulated tasks and demonstrate that it improves learning both alone and when combined with an existing hindsight algorithm.
arXiv Detail & Related papers (2023-03-03T21:55:04Z) - Bottom-Up Skill Discovery from Unsegmented Demonstrations for
Long-Horizon Robot Manipulation [55.31301153979621]
We tackle real-world long-horizon robot manipulation tasks through skill discovery.
We present a bottom-up approach to learning a library of reusable skills from unsegmented demonstrations.
Our method has shown superior performance over state-of-the-art imitation learning methods in multi-stage manipulation tasks.
arXiv Detail & Related papers (2021-09-28T16:18:54Z) - Reactive Long Horizon Task Execution via Visual Skill and Precondition
Models [59.76233967614774]
We describe an approach for sim-to-real training that can accomplish unseen robotic tasks using models learned in simulation to ground components of a simple task planner.
We show an increase in success rate from 91.6% to 98% in simulation and from 10% to 80% success rate in the real-world as compared with naive baselines.
arXiv Detail & Related papers (2020-11-17T15:24:01Z) - Learning Object Manipulation Skills via Approximate State Estimation
from Real Videos [47.958512470724926]
Humans are adept at learning new tasks by watching a few instructional videos.
On the other hand, robots that learn new actions either require a lot of effort through trial and error, or use expert demonstrations that are challenging to obtain.
In this paper, we explore a method that facilitates learning object manipulation skills directly from videos.
arXiv Detail & Related papers (2020-11-13T08:53:47Z) - Visual Imitation Made Easy [102.36509665008732]
We present an alternate interface for imitation that simplifies the data collection process while allowing for easy transfer to robots.
We use commercially available reacher-grabber assistive tools both as a data collection device and as the robot's end-effector.
We experimentally evaluate on two challenging tasks: non-prehensile pushing and prehensile stacking, with 1000 diverse demonstrations for each task.
arXiv Detail & Related papers (2020-08-11T17:58:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.