Stochastic Causal Programming for Bounding Treatment Effects
- URL: http://arxiv.org/abs/2202.10806v4
- Date: Wed, 17 May 2023 15:14:17 GMT
- Title: Stochastic Causal Programming for Bounding Treatment Effects
- Authors: Kirtan Padh, Jakob Zeitler, David Watson, Matt Kusner, Ricardo Silva
and Niki Kilbertus
- Abstract summary: Causal effect estimation is important for many tasks in the natural and social sciences.
We use flexible learning algorithms and Monte Carlo methods to implement a family of solutions under the name of causal programming.
- Score: 8.879868078611443
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal effect estimation is important for many tasks in the natural and
social sciences. We design algorithms for the continuous partial identification
problem: bounding the effects of multivariate, continuous treatments when
unmeasured confounding makes identification impossible. Specifically, we cast
causal effects as objective functions within a constrained optimization
problem, and minimize/maximize these functions to obtain bounds. We combine
flexible learning algorithms with Monte Carlo methods to implement a family of
solutions under the name of stochastic causal programming. In particular, we
show how the generic framework can be efficiently formulated in settings where
auxiliary variables are clustered into pre-treatment and post-treatment sets,
where no fine-grained causal graph can be easily specified. In these settings,
we can avoid the need for fully specifying the distribution family of hidden
common causes. Monte Carlo computation is also much simplified, leading to
algorithms which are more computationally stable against alternatives.
Related papers
- Efficient Differentiable Discovery of Causal Order [14.980926991441342]
Intersort is a score-based method to discover causal order of variables.
We reformulate Intersort using differentiable sorting and ranking techniques.
Our work opens the door to efficiently incorporating regularization for causal order into the training of differentiable models.
arXiv Detail & Related papers (2024-10-11T13:11:55Z) - Provably Efficient Learning in Partially Observable Contextual Bandit [4.910658441596583]
We show how causal bounds can be applied to improving classical bandit algorithms.
This research has the potential to enhance the performance of contextual bandit agents in real-world applications.
arXiv Detail & Related papers (2023-08-07T13:24:50Z) - Optimal Algorithms for Stochastic Complementary Composite Minimization [55.26935605535377]
Inspired by regularization techniques in statistics and machine learning, we study complementary composite minimization.
We provide novel excess risk bounds, both in expectation and with high probability.
Our algorithms are nearly optimal, which we prove via novel lower complexity bounds for this class of problems.
arXiv Detail & Related papers (2022-11-03T12:40:24Z) - An Application of a Multivariate Estimation of Distribution Algorithm to
Cancer Chemotherapy [59.40521061783166]
Chemotherapy treatment for cancer is a complex optimisation problem with a large number of interacting variables and constraints.
We show that the more sophisticated algorithm would yield better performance on a complex problem like this.
We hypothesise that this is caused by the more sophisticated algorithm being impeded by the large number of interactions in the problem.
arXiv Detail & Related papers (2022-05-17T15:28:46Z) - Experimental Design for Causal Effect Identification [31.23071073904698]
We consider the problem of designing the collection of interventions with the minimum cost to identify the desired effect.
First, we prove that this problem is NP-hard, and subsequently propose an algorithm that can either find the optimal solution or a logarithmic approximation of it.
Although these algorithms could potentially stumble on sub-optimal solutions, our simulations show that they achieve small regrets on random graphs.
arXiv Detail & Related papers (2022-05-04T13:19:04Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - Parallel Stochastic Mirror Descent for MDPs [72.75921150912556]
We consider the problem of learning the optimal policy for infinite-horizon Markov decision processes (MDPs)
Some variant of Mirror Descent is proposed for convex programming problems with Lipschitz-continuous functionals.
We analyze this algorithm in a general case and obtain an estimate of the convergence rate that does not accumulate errors during the operation of the method.
arXiv Detail & Related papers (2021-02-27T19:28:39Z) - An Integer Linear Programming Framework for Mining Constraints from Data [81.60135973848125]
We present a general framework for mining constraints from data.
In particular, we consider the inference in structured output prediction as an integer linear programming (ILP) problem.
We show that our approach can learn to solve 9x9 Sudoku puzzles and minimal spanning tree problems from examples without providing the underlying rules.
arXiv Detail & Related papers (2020-06-18T20:09:53Z) - A Class of Algorithms for General Instrumental Variable Models [29.558215059892206]
Causal treatment effect estimation is a key problem that arises in a variety of real-world settings.
We provide a method for causal effect bounding in continuous distributions.
arXiv Detail & Related papers (2020-06-11T12:32:24Z) - Learning High Order Feature Interactions with Fine Control Kernels [12.5433010409486]
We provide a methodology for learning sparse statistical models that use as features all possible multiplicative interactions.
We also introduce an algorithmic paradigm, the Fine Control Kernel framework, so named because it is based on Fenchel Duality.
arXiv Detail & Related papers (2020-02-09T06:29:15Z) - Polynomial-Time Exact MAP Inference on Discrete Models with Global
Dependencies [83.05591911173332]
junction tree algorithm is the most general solution for exact MAP inference with run-time guarantees.
We propose a new graph transformation technique via node cloning which ensures a run-time for solving our target problem independently of the form of a corresponding clique tree.
arXiv Detail & Related papers (2019-12-27T13:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.