論文の概要: The Winning Solution to the iFLYTEK Challenge 2021 Cultivated Land
Extraction from High-Resolution Remote Sensing Image
- arxiv url: http://arxiv.org/abs/2202.10974v1
- Date: Tue, 22 Feb 2022 15:28:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-23 14:22:05.434689
- Title: The Winning Solution to the iFLYTEK Challenge 2021 Cultivated Land
Extraction from High-Resolution Remote Sensing Image
- Title(参考訳): 高分解能リモートセンシング画像からの耕作地抽出におけるiflytek challenge 2021の勝利解
- Authors: Zhen Zhao, Yuqiu Liu, Gang Zhang, Liang Tang and Xiaolin Hu
- Abstract要約: 本稿では,高解像度リモートセンシング画像から土地を抽出するiFLYTEKチャレンジ2021について紹介する。
この課題は、非常に高解像度のマルチスペクトルリモートセンシング画像において、耕作地オブジェクトをセグメント化することである。
- 参考スコア(独自算出の注目度): 19.369928529702438
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extracting cultivated land accurately from high-resolution remote images is a
basic task for precision agriculture. This report introduces our solution to
the iFLYTEK challenge 2021 cultivated land extraction from high-resolution
remote sensing image. The challenge requires segmenting cultivated land objects
in very high-resolution multispectral remote sensing images. We established a
highly effective and efficient pipeline to solve this problem. We first divided
the original images into small tiles and separately performed instance
segmentation on each tile. We explored several instance segmentation algorithms
that work well on natural images and developed a set of effective methods that
are applicable to remote sensing images. Then we merged the prediction results
of all small tiles into seamless, continuous segmentation results through our
proposed overlap-tile fusion strategy. We achieved the first place among 486
teams in the challenge.
- Abstract(参考訳): 高分解能遠隔画像から耕作地を正確に抽出することは精密農業の基本課題である。
本稿では,高分解能リモートセンシング画像から土壌抽出を行うiflytek challenge 2021の解法を紹介する。
課題は、非常に高解像度のマルチスペクトルリモートセンシング画像で、耕作された土地のオブジェクトをセグメンテーションすることである。
この問題を解決するために、非常に効率的で効率的なパイプラインを構築しました。
まず,原画像を小さなタイルに分割し,各タイルに対して個別にインスタンス分割を行った。
自然画像にうまく機能するインスタンス分割アルゴリズムをいくつか検討し,リモートセンシング画像に適用可能な効果的な手法を開発した。
そして,提案するオーバーラップタイル融合戦略により,すべての小タイルの予測結果をシームレスで連続的なセグメンテーション結果にマージした。
このチャレンジで486チーム中1位を獲得した。
関連論文リスト
- Plant detection from ultra high resolution remote sensing images: A Semantic Segmentation approach based on fuzzy loss [2.6489824612123716]
超高解像度(UHR)リモートセンシング画像から植物種を識別する課題に取り組む。
我々のアプローチは、ミリレベルの空間分解能を特徴とするRGBリモートセンシングデータセットの導入である。
UHRデータセットと公開データセットの両方で得られた最初の実験結果が提示され、提案手法の妥当性が示された。
論文 参考訳(メタデータ) (2024-08-31T17:40:17Z) - DeepMerge: Deep-Learning-Based Region-Merging for Image Segmentation [7.063322114865965]
本稿では,DeepMergeと呼ばれる深層学習に基づく領域マージ手法を提案する。
これは、ディープラーニングを用いて類似性を学習し、RAGに隣接する類似のスーパーピクセルをマージする最初の方法である。
DeepMergeは最も高いF値(0.9550)と最も低い総誤差TE(0.0895)を達成し、異なるサイズのオブジェクトを正しく分割し、競合する全てのセグメンテーション法より優れている。
論文 参考訳(メタデータ) (2023-05-31T12:27:58Z) - Extended Agriculture-Vision: An Extension of a Large Aerial Image
Dataset for Agricultural Pattern Analysis [11.133807938044804]
農業ビジョンデータセットの改良版(Chiu et al., 2020b)をリリースする。
このデータセットは,3600大,高解像度(10cm/ピクセル),フルフィールド,赤緑色,近赤外画像の事前トレーニングにより拡張する。
下流分類とセマンティックセグメンテーションの両タスクにおいて、異なるコントラスト学習アプローチをベンチマークすることで、このデータの有用性を実証する。
論文 参考訳(メタデータ) (2023-03-04T17:35:24Z) - Take a Prior from Other Tasks for Severe Blur Removal [52.380201909782684]
知識蒸留に基づくクロスレベル特徴学習戦略
多レベルアグリゲーションとセマンティックアテンション変換によるセマンティック事前埋め込み層を効果的に統合する。
GoProやRealBlurのデータセットのような、自然な画像劣化ベンチマークと実世界の画像の実験は、我々の方法の有効性と能力を実証している。
論文 参考訳(メタデータ) (2023-02-14T08:30:51Z) - Any-resolution Training for High-resolution Image Synthesis [55.19874755679901]
生成モデルは、様々な大きさの自然画像であっても、一定の解像度で動作します。
すべてのピクセルが重要であり、そのネイティブ解像度で収集された可変サイズのイメージを持つデータセットを作成する、と我々は主張する。
ランダムなスケールでパッチをサンプリングし、可変出力解像度で新しいジェネレータを訓練するプロセスである。
論文 参考訳(メタデータ) (2022-04-14T17:59:31Z) - InfinityGAN: Towards Infinite-Resolution Image Synthesis [92.40782797030977]
任意の解像度画像を生成するinfinityganを提案する。
少ない計算資源でパッチバイパッチをシームレスに訓練し、推論する方法を示す。
論文 参考訳(メタデータ) (2021-04-08T17:59:30Z) - Aggregated Contextual Transformations for High-Resolution Image
Inpainting [57.241749273816374]
画像の高精細化のための拡張GANモデルAggregated Contextual-Transformation GAN (AOT-GAN)を提案する。
そこで,提案するAOTブロックの複数のレイヤを積み重ねることで,AOT-GANのジェネレータを構築する。
テクスチャ合成を改善するため,AOT-GANの識別をマスク予測タスクでトレーニングすることで強化する。
論文 参考訳(メタデータ) (2021-04-03T15:50:17Z) - A new public Alsat-2B dataset for single-image super-resolution [1.284647943889634]
本稿では,低空間解像度画像(10m, 2.5m)と高空間解像度画像(10m, 2.5m)の新たなリモートセンシングデータセット(Alsat2B)を提案する。
パンシャープ化により高分解能画像を得る。
その結果,提案手法は有望であり,データセットの課題を強調していることがわかった。
論文 参考訳(メタデータ) (2021-03-21T10:47:38Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) は、それまで文献になかった解像度で高解像度でリアルな画像を生成する。
本手法は, 従来よりも高分解能, スケールファクターの知覚品質において, 最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-03-08T16:44:31Z) - Gated Fusion Network for Degraded Image Super Resolution [78.67168802945069]
本稿では,基本特徴と回復特徴を別々に抽出する二分岐畳み込みニューラルネットワークを提案する。
特徴抽出ステップを2つのタスク非依存ストリームに分解することで、デュアルブランチモデルがトレーニングプロセスを容易にすることができる。
論文 参考訳(メタデータ) (2020-03-02T13:28:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。