論文の概要: Plant detection from ultra high resolution remote sensing images: A Semantic Segmentation approach based on fuzzy loss
- arxiv url: http://arxiv.org/abs/2409.00513v1
- Date: Sat, 31 Aug 2024 17:40:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 14:18:10.770538
- Title: Plant detection from ultra high resolution remote sensing images: A Semantic Segmentation approach based on fuzzy loss
- Title(参考訳): 超高分解能リモートセンシング画像からの植物検出:ファジィロスに基づくセマンティックセグメンテーションアプローチ
- Authors: Shivam Pande, Baki Uzun, Florent Guiotte, Thomas Corpetti, Florian Delerue, Sébastien Lefèvre,
- Abstract要約: 超高解像度(UHR)リモートセンシング画像から植物種を識別する課題に取り組む。
我々のアプローチは、ミリレベルの空間分解能を特徴とするRGBリモートセンシングデータセットの導入である。
UHRデータセットと公開データセットの両方で得られた最初の実験結果が提示され、提案手法の妥当性が示された。
- 参考スコア(独自算出の注目度): 2.6489824612123716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we tackle the challenge of identifying plant species from ultra high resolution (UHR) remote sensing images. Our approach involves introducing an RGB remote sensing dataset, characterized by millimeter-level spatial resolution, meticulously curated through several field expeditions across a mountainous region in France covering various landscapes. The task of plant species identification is framed as a semantic segmentation problem for its practical and efficient implementation across vast geographical areas. However, when dealing with segmentation masks, we confront instances where distinguishing boundaries between plant species and their background is challenging. We tackle this issue by introducing a fuzzy loss within the segmentation model. Instead of utilizing one-hot encoded ground truth (GT), our model incorporates Gaussian filter refined GT, introducing stochasticity during training. First experimental results obtained on both our UHR dataset and a public dataset are presented, showing the relevance of the proposed methodology, as well as the need for future improvement.
- Abstract(参考訳): 本研究では,超高解像度(UHR)リモートセンシング画像から植物種を識別する課題に取り組む。
提案手法では,フランスの山岳地域を横断するいくつかの地中探査において,ミリレベルの空間分解能を特徴とするRGBリモートセンシングデータセットを導入する。
植物種同定の課題は、地理的に広い領域にまたがる実用的で効率的な実装のための意味的セグメンテーションの問題である。
しかし、セグメンテーションマスクを扱う際には、植物種とその背景の境界を区別することが困難である事例に直面している。
セグメント化モデルにファジィ損失を導入することでこの問題に対処する。
このモデルでは, 1ホット符号化基底真理(GT)を利用する代わりに, ガウスフィルタを改良したGTを導入し, 訓練中に確率性を導入する。
UHRデータセットと公開データセットの両方で得られた最初の実験結果が提示され、提案手法の妥当性と今後の改善の必要性が示された。
関連論文リスト
- Deep Multimodal Fusion for Semantic Segmentation of Remote Sensing Earth Observation Data [0.08192907805418582]
本稿では,セマンティックセグメンテーションのための後期融合深層学習モデル(LF-DLM)を提案する。
1つのブランチは、UNetFormerがキャプチャした空中画像の詳細なテクスチャと、ViT(Multi-Axis Vision Transformer)バックボーンを統合する。
もう一方のブランチは、U-ViNet(U-TAE)を用いてSentinel-2衛星画像Max時系列から複雑な時間ダイナミクスをキャプチャする。
論文 参考訳(メタデータ) (2024-10-01T07:50:37Z) - PGNeXt: High-Resolution Salient Object Detection via Pyramid Grafting Network [24.54269823691119]
本稿では、データセットとネットワークフレームワークの両方の観点から、より難解な高分解能サルエントオブジェクト検出(HRSOD)について述べる。
HRSODデータセットの欠如を補うため、UHRSDと呼ばれる大規模高解像度の高分解能物体検出データセットを慎重に収集した。
すべての画像はピクセルレベルで微妙にアノテートされ、以前の低解像度のSODデータセットをはるかに上回っている。
論文 参考訳(メタデータ) (2024-08-02T09:31:21Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
我々は,地球観測における注釈付きデータの不足に対処するために,生成的画像拡散の可能性を探る。
我々の知る限りでは、衛星セグメンテーションのための画像と対応するマスクの両方を最初に生成する。
論文 参考訳(メタデータ) (2024-03-25T10:30:22Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
フォトリアリスティック・ジェネレータの急速な進歩は、真の画像と操作された画像の相違がますます不明瞭になっている臨界点に達している。
公開されている顔の偽造データセットはいくつかあるが、偽造顔は主にGANベースの合成技術を用いて生成される。
我々は,大規模で多様できめ細かな高忠実度データセットであるGenFaceを提案し,ディープフェイク検出の進展を促進する。
論文 参考訳(メタデータ) (2024-02-03T03:13:50Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - Progressive Domain Adaptation with Contrastive Learning for Object
Detection in the Satellite Imagery [0.0]
最先端のオブジェクト検出手法は、小さくて密度の高いオブジェクトを特定するのにほとんど失敗している。
本稿では,特徴抽出プロセスを改善する小型物体検出パイプラインを提案する。
未確認データセットにおけるオブジェクト識別の劣化を緩和できることを示す。
論文 参考訳(メタデータ) (2022-09-06T15:16:35Z) - Sci-Net: a Scale Invariant Model for Building Detection from Aerial
Images [0.0]
本研究では,空間分解能の異なる空間画像に存在している建物を分割できるスケール不変ニューラルネットワーク(Sci-Net)を提案する。
具体的には,U-Netアーキテクチャを改良し,それを高密度なASPP(Atrous Space Pyramid Pooling)で融合し,微細なマルチスケール表現を抽出した。
論文 参考訳(メタデータ) (2021-11-12T16:45:20Z) - Transformer Meets Convolution: A Bilateral Awareness Net-work for
Semantic Segmentation of Very Fine Resolution Ur-ban Scene Images [6.460167724233707]
本稿では,依存経路とテクスチャパスを含む相互認知ネットワーク(BANet)を提案する。
BANetは、VFR画像の長距離関係と細かな詳細をキャプチャする。
3つの大規模都市景観画像セグメンテーションデータセット(ISPRS Vaihingen データセット、ISPRS Potsdam データセット、UAVid データセット)で実施された実験は、BANetの有効性を実証している。
論文 参考訳(メタデータ) (2021-06-23T13:57:36Z) - AdaZoom: Adaptive Zoom Network for Multi-Scale Object Detection in Large
Scenes [57.969186815591186]
大規模なシーンの検出は、小さなオブジェクトと極端なスケールの変動のために難しい問題である。
本稿では,物体検出のための焦点領域を適応的に拡大するために,フレキシブルな形状と焦点長を有する選択的拡大器として,新しい適応型Zoom(AdaZoom)ネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-19T03:30:22Z) - Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation [62.29076080124199]
本稿では,クロスドメインオブジェクト検出のための特徴適応手法を提案する。
粗粒度では、アテンション機構を採用して前景領域を抽出し、その辺縁分布に応じて整列する。
粒度の細かい段階では、同じカテゴリのグローバルプロトタイプと異なるドメインとの距離を最小化することにより、前景の条件分布アライメントを行う。
論文 参考訳(メタデータ) (2020-03-23T13:40:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。