Mirror Descent Strikes Again: Optimal Stochastic Convex Optimization
under Infinite Noise Variance
- URL: http://arxiv.org/abs/2202.11632v1
- Date: Wed, 23 Feb 2022 17:08:40 GMT
- Title: Mirror Descent Strikes Again: Optimal Stochastic Convex Optimization
under Infinite Noise Variance
- Authors: Nuri Mert Vural, Lu Yu, Krishnakumar Balasubramanian, Stanislav
Volgushev, Murat A. Erdogdu
- Abstract summary: We quantify the convergence rate of the Mirror Descent algorithm with a class of uniformly convex mirror maps.
This algorithm does not require any explicit gradient clipping or normalization.
We complement our results with information-theoretic lower bounds showing that no other algorithm using only first-order oracles can achieve improved rates.
- Score: 17.199063087458907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study stochastic convex optimization under infinite noise variance.
Specifically, when the stochastic gradient is unbiased and has uniformly
bounded $(1+\kappa)$-th moment, for some $\kappa \in (0,1]$, we quantify the
convergence rate of the Stochastic Mirror Descent algorithm with a particular
class of uniformly convex mirror maps, in terms of the number of iterations,
dimensionality and related geometric parameters of the optimization problem.
Interestingly this algorithm does not require any explicit gradient clipping or
normalization, which have been extensively used in several recent empirical and
theoretical works. We complement our convergence results with
information-theoretic lower bounds showing that no other algorithm using only
stochastic first-order oracles can achieve improved rates. Our results have
several interesting consequences for devising online/streaming stochastic
approximation algorithms for problems arising in robust statistics and machine
learning.
Related papers
- Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - Semi-Bandit Learning for Monotone Stochastic Optimization [20.776114616154242]
We provide a generic online learning algorithm for a class of "monotone" problems.
Our framework applies to several fundamental problems in optimization such as prophet, Pandora's box knapsack, inequality matchings and submodular optimization.
arXiv Detail & Related papers (2023-12-24T07:46:37Z) - Gradient-free optimization of highly smooth functions: improved analysis
and a new algorithm [87.22224691317766]
This work studies problems with zero-order noisy oracle information under the assumption that the objective function is highly smooth.
We consider two kinds of zero-order projected gradient descent algorithms.
arXiv Detail & Related papers (2023-06-03T17:05:13Z) - Stochastic Nonsmooth Convex Optimization with Heavy-Tailed Noises:
High-Probability Bound, In-Expectation Rate and Initial Distance Adaptation [22.758674468435302]
In a heavy-tailed noise regime, the difference between the gradient and the true rate is assumed to have a finite $p-th moment.
This paper provides a comprehensive analysis of nonsmooth convex optimization with heavy-tailed noises.
arXiv Detail & Related papers (2023-03-22T03:05:28Z) - Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization [116.89941263390769]
We consider the smooth convex-concave bilinearly-coupled saddle-point problem, $min_mathbfxmax_mathbfyF(mathbfx) + H(mathbfx,mathbfy)$, where one has access to first-order oracles for $F$, $G$ as well as the bilinear coupling function $H$.
We present a emphaccelerated gradient-extragradient (AG-EG) descent-ascent algorithm that combines extragrad
arXiv Detail & Related papers (2022-06-17T06:10:20Z) - A gradient estimator via L1-randomization for online zero-order
optimization with two point feedback [93.57603470949266]
We present a novel gradient estimator based on two function evaluation and randomization.
We consider two types of assumptions on the noise of the zero-order oracle: canceling noise and adversarial noise.
We provide an anytime and completely data-driven algorithm, which is adaptive to all parameters of the problem.
arXiv Detail & Related papers (2022-05-27T11:23:57Z) - An Algebraically Converging Stochastic Gradient Descent Algorithm for
Global Optimization [14.336473214524663]
A key component in the algorithm is the randomness based on the value of the objective function.
We prove the convergence of the algorithm with an algebra and tuning in the parameter space.
We present several numerical examples to demonstrate the efficiency and robustness of the algorithm.
arXiv Detail & Related papers (2022-04-12T16:27:49Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.