論文の概要: ML-based Anomaly Detection in Optical Fiber Monitoring
- arxiv url: http://arxiv.org/abs/2202.11756v1
- Date: Wed, 23 Feb 2022 19:43:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-26 09:13:59.255305
- Title: ML-based Anomaly Detection in Optical Fiber Monitoring
- Title(参考訳): 光ファイバーモニタリングにおけるMLによる異常検出
- Authors: Khouloud Abdelli, Joo Yeon Cho, Carsten Tropschug
- Abstract要約: 本稿では,光ネットワークにおける異常検出と故障同定のためのデータ駆動手法を提案し,ファイバブレークや光タッピングなどの物理的攻撃を診断する。
実運用データを用いた各種攻撃シナリオを用いた実験により,本手法の有効性を検証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Secure and reliable data communication in optical networks is critical for
high-speed internet. We propose a data driven approach for the anomaly
detection and faults identification in optical networks to diagnose physical
attacks such as fiber breaks and optical tapping. The proposed methods include
an autoencoder-based anomaly detection and an attention-based bidirectional
gated recurrent unit algorithm for the fiber fault identification and
localization. We verify the efficiency of our methods by experiments under
various attack scenarios using real operational data.
- Abstract(参考訳): 光ネットワークにおけるセキュアで信頼性の高いデータ通信は高速インターネットにとって重要である。
本稿では,光ネットワークにおける異常検出と故障同定のためのデータ駆動アプローチを提案し,ファイバーブレークや光タッピングなどの物理的攻撃を診断する。
提案手法は, 自動エンコーダによる異常検出と, ファイバ故障同定と位置同定のためのアテンションベース双方向ゲートリカレントユニットアルゴリズムを含む。
本手法は,実運用データを用いて様々な攻撃シナリオにおける実験により有効性を検証する。
関連論文リスト
- Eavesdropper localization for quantum and classical channels via
nonlinear scattering [58.720142291102135]
量子鍵分布(QKD)は物理学の法則に基づく理論的セキュリティを提供する。
本稿では,古典的チャネルだけでなく,量子的チャネルにも応用可能なeavesdropper位置に関する新しいアプローチを提案する。
提案手法は, 標準光ファイバ内部のcm精度で1%のエバネッセントアウトカップリングを局在させる作業において, 従来のOTDRよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-25T21:06:27Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Gated Recurrent Unit based Autoencoder for Optical Link Fault Diagnosis
in Passive Optical Networks [0.0]
受動光ネットワークにおけるファイバ故障の同定と局所化のための深層学習手法を提案する。
実験の結果,提案手法は97%の精度で断層を検知し, RMSE0.18mでピンポイントし, 従来の手法より優れていた。
論文 参考訳(メタデータ) (2022-03-19T09:26:07Z) - Convolutional Neural Networks for Reflective Event Detection and
Characterization in Fiber Optical Links Given Noisy OTDR Signals [0.0]
本稿では,畳み込みニューラルネットワーク(CNN)に基づく新しいデータ駆動手法を提案する。
シミュレーションでは,SNR値が低い場合でも,誤報率の低い検出能力と位置決め精度の向上を実現した。
論文 参考訳(メタデータ) (2022-03-19T09:20:40Z) - Machine Learning-based Anomaly Detection in Optical Fiber Monitoring [0.0]
本稿では,ファイバー切断や光盗聴攻撃を含む繊維異常を高精度かつ迅速に検出し,診断し,局所化するデータ駆動手法を提案する。
提案手法は,オートエンコーダに基づく異常検出と,アテンションに基づく双方向ゲートリカレント・ユニット・アルゴリズムを組み合わせた。
実験の結果, (i) オートエンコーダはF1スコア96.86%の繊維欠陥や異常を検知し, (ii) 注意に基づく双方向ゲート再帰単位アルゴリズムは検出された異常を平均98.2%の精度で識別する。
論文 参考訳(メタデータ) (2022-03-19T08:56:54Z) - Reflective Fiber Faults Detection and Characterization Using
Long-Short-Term Memory [0.0]
本研究では,長い短期記憶(LSTM)に基づく新たな学習モデルを提案し,繊維反射欠陥の反射率を検出し,検出し,推定する。
実験の結果,提案手法は短時間で優れた検出能力と高精度な位置推定を実現することができた。
論文 参考訳(メタデータ) (2022-03-19T08:45:45Z) - Transfer Learning for Fault Diagnosis of Transmission Lines [55.971052290285485]
事前学習されたLeNet-5畳み込みニューラルネットワークに基づく新しい伝達学習フレームワークを提案する。
ソースニューラルネットワークから知識を転送して、異種ターゲットデータセットを予測することで、異なる伝送ラインの長さとインピーダンスの障害を診断することができる。
論文 参考訳(メタデータ) (2022-01-20T06:36:35Z) - Source-Agnostic Gravitational-Wave Detection with Recurrent Autoencoders [0.0]
本稿では, レーザ干渉計における重力波信号検出問題に対する, ディープリカレントオートエンコーダに基づく異常検出手法の適用について述べる。
ノイズデータに基づいて訓練されたこのアルゴリズムは、特定の種類のソースを標的にすることなく、教師なしの戦略を用いて信号を検出することができる。
論文 参考訳(メタデータ) (2021-07-27T09:56:49Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
集積フォトニクスは優れた位相安定性を提供し、半導体産業によって提供される大規模な製造性に依存することができる。
このような光回路に基づく新しいデバイスは、機械学習アプリケーションにおいて高速でエネルギー効率の高い計算を約束する。
線形光ネットワークの転送行列を再構成する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-10-01T16:04:22Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
本稿では,効率的な物体検出のためのバイナライズニューラルネットワークのBiDetを提案する。
我々のBiDetは、冗長除去による物体検出にバイナリニューラルネットワークの表現能力を完全に活用している。
我々の手法は、最先端のバイナリニューラルネットワークを大きなマージンで上回る。
論文 参考訳(メタデータ) (2020-03-09T08:16:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。