A gentle introduction to Quantum Natural Language Processing
- URL: http://arxiv.org/abs/2202.11766v1
- Date: Wed, 23 Feb 2022 20:17:00 GMT
- Title: A gentle introduction to Quantum Natural Language Processing
- Authors: Shervin Le Du, Senaida Hern\'andez Santana, Giannicola Scarpa
- Abstract summary: The main goal of this master's thesis is to introduce Quantum Natural Language Processing.
QNLP aims at representing sentences' meaning as vectors encoded into quantum computers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The main goal of this master's thesis is to introduce Quantum Natural
Language Processing (QNLP) in a way understandable by both the NLP engineer and
the quantum computing practitioner. QNLP is a recent application of quantum
computing that aims at representing sentences' meaning as vectors encoded into
quantum computers. To achieve this, the distributional meaning of words is
extended by the compositional meaning of sentences (DisCoCat model) : the
vectors representing words' meanings are composed through the syntactic
structure of the sentence. This is done using an algorithm based on tensor
products. We see that this algorithm is inefficient on classical computers but
scales well using quantum circuits. After exposing the practical details of its
implementation, we go through three use-cases.
Related papers
- Quantum Algorithms for Compositional Text Processing [1.3654846342364308]
We focus on the recently proposed DisCoCirc framework for natural language, and propose a quantum adaptation, QDisCoCirc.
This is motivated by a compositional approach to rendering AI interpretable.
For the model-native primitive operation of text similarity, we derive quantum algorithms for fault-tolerant quantum computers.
arXiv Detail & Related papers (2024-08-12T11:21:40Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Compilation of algorithm-specific graph states for quantum circuits [55.90903601048249]
We present a quantum circuit compiler that prepares an algorithm-specific graph state from quantum circuits described in high level languages.
The computation can then be implemented using a series of non-Pauli measurements on this graph state.
arXiv Detail & Related papers (2022-09-15T14:52:31Z) - Near-Term Advances in Quantum Natural Language Processing [0.03298597939573778]
This paper describes experiments showing that some tasks in natural language processing can already be performed using quantum computers.
The first uses an explicit word-based approach, in which word-topic scoring weights are implemented as fractional rotations of individual qubit.
A new phrase is classified based on the accumulation of these weights in a scoring qubit using entangling controlled-NOT gates.
arXiv Detail & Related papers (2022-06-05T13:10:46Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - QNLP in Practice: Running Compositional Models of Meaning on a Quantum
Computer [0.7194733565949804]
We present results on the first NLP experiments conducted on Noisy Intermediate-Scale Quantum (NISQ) computers.
We create representations for sentences that have a natural mapping to quantum circuits.
We successfully train NLP models that solve simple sentence classification tasks on quantum hardware.
arXiv Detail & Related papers (2021-02-25T13:37:33Z) - Facial Expression Recognition on a Quantum Computer [68.8204255655161]
We show a possible solution to facial expression recognition using a quantum machine learning approach.
We define a quantum circuit that manipulates the graphs adjacency matrices encoded into the amplitudes of some appropriately defined quantum states.
arXiv Detail & Related papers (2021-02-09T13:48:00Z) - Foundations for Near-Term Quantum Natural Language Processing [0.17205106391379021]
We provide conceptual and mathematical foundations for near-term quantum natural language processing (QNLP)
We recall how the quantum model for natural language that we employ canonically combines linguistic meanings with rich linguistic structure.
We provide references for supporting empirical evidence and formal statements concerning mathematical generality.
arXiv Detail & Related papers (2020-12-07T14:49:33Z) - Quantum Natural Language Processing on Near-Term Quantum Computers [0.0]
We describe a full-stack pipeline for natural language processing on near-term quantum computers, aka QNLP.
DisCoCat is a language-modelling framework that extends and complements the compositional structure of pregroup grammars.
We present a method for mapping DisCoCat diagrams to quantum circuits.
arXiv Detail & Related papers (2020-05-08T16:42:54Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.