Near-Term Advances in Quantum Natural Language Processing
- URL: http://arxiv.org/abs/2206.02171v3
- Date: Mon, 15 Apr 2024 18:53:56 GMT
- Title: Near-Term Advances in Quantum Natural Language Processing
- Authors: Dominic Widdows, Aaranya Alexander, Daiwei Zhu, Chase Zimmerman, Arunava Majumder,
- Abstract summary: This paper describes experiments showing that some tasks in natural language processing can already be performed using quantum computers.
The first uses an explicit word-based approach, in which word-topic scoring weights are implemented as fractional rotations of individual qubit.
A new phrase is classified based on the accumulation of these weights in a scoring qubit using entangling controlled-NOT gates.
- Score: 0.03298597939573778
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes experiments showing that some tasks in natural language processing (NLP) can already be performed using quantum computers, though so far only with small datasets. We demonstrate various approaches to topic classification. The first uses an explicit word-based approach, in which word-topic scoring weights are implemented as fractional rotations of individual qubit, and a new phrase is classified based on the accumulation of these weights in a scoring qubit using entangling controlled-NOT gates. This is compared with more scalable quantum encodings of word embedding vectors, which are used in the computation of kernel values in a quantum support vector machine: this approach achieved an average of 62% accuracy on classification tasks involving over 10000 words, which is the largest such quantum computing experiment to date. We describe a quantum probability approach to bigram modeling that can be applied to sequences of words and formal concepts, investigating a generative approximation to these distributions using a quantum circuit Born machine, and an approach to ambiguity resolution in verb-noun composition using single-qubit rotations for simple nouns and 2-qubit controlled-NOT gates for simple verbs. The smaller systems described have been run successfully on physical quantum computers, and the larger ones have been simulated. We show that statistically meaningful results can be obtained using real datasets, but this is much more difficult to predict than with easier artificial language examples used previously in developing quantum NLP systems. Other approaches to quantum NLP are compared, partly with respect to contemporary issues including informal language, fluency, and truthfulness.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Multimodal deep representation learning for quantum cross-platform
verification [60.01590250213637]
Cross-platform verification, a critical undertaking in the realm of early-stage quantum computing, endeavors to characterize the similarity of two imperfect quantum devices executing identical algorithms.
We introduce an innovative multimodal learning approach, recognizing that the formalism of data in this task embodies two distinct modalities.
We devise a multimodal neural network to independently extract knowledge from these modalities, followed by a fusion operation to create a comprehensive data representation.
arXiv Detail & Related papers (2023-11-07T04:35:03Z) - Toward Quantum Machine Translation of Syntactically Distinct Languages [0.0]
We explore the feasibility of language translation using quantum natural language processing algorithms on noisy intermediate-scale quantum (NISQ) devices.
We employ Shannon entropy to demonstrate the significant role of some appropriate angles of rotation gates in the performance of parametrized quantum circuits.
arXiv Detail & Related papers (2023-07-31T11:24:54Z) - MORE: Measurement and Correlation Based Variational Quantum Circuit for
Multi-classification [10.969833959443495]
MORE stands for measurement and correlation based variational quantum multi-classifier.
We implement MORE using the Qiskit Python library and evaluate it through extensive experiments on both noise-free and noisy quantum systems.
arXiv Detail & Related papers (2023-07-21T19:33:10Z) - Dimension reduction and redundancy removal through successive Schmidt
decompositions [4.084744267747294]
We study the approximation of matrices and vectors by using their tensor products obtained through successive Schmidt decompositions.
We show that data with distributions such as uniform, Poisson, exponential, or similar to these distributions can be approximated by using only a few terms.
We also show how the method can be used to simplify quantum Hamiltonians.
arXiv Detail & Related papers (2023-02-09T17:47:51Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Validation tests of GBS quantum computers give evidence for quantum
advantage with a decoherent target [62.997667081978825]
We use positive-P phase-space simulations of grouped count probabilities as a fingerprint for verifying multi-mode data.
We show how one can disprove faked data, and apply this to a classical count algorithm.
arXiv Detail & Related papers (2022-11-07T12:00:45Z) - A gentle introduction to Quantum Natural Language Processing [0.0]
The main goal of this master's thesis is to introduce Quantum Natural Language Processing.
QNLP aims at representing sentences' meaning as vectors encoded into quantum computers.
arXiv Detail & Related papers (2022-02-23T20:17:00Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
Graph Edit Distance (GED) measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical.
In this paper we present a comparative study of two quantum approaches to computing GED.
arXiv Detail & Related papers (2021-11-19T12:35:26Z) - QNLP in Practice: Running Compositional Models of Meaning on a Quantum
Computer [0.7194733565949804]
We present results on the first NLP experiments conducted on Noisy Intermediate-Scale Quantum (NISQ) computers.
We create representations for sentences that have a natural mapping to quantum circuits.
We successfully train NLP models that solve simple sentence classification tasks on quantum hardware.
arXiv Detail & Related papers (2021-02-25T13:37:33Z) - Facial Expression Recognition on a Quantum Computer [68.8204255655161]
We show a possible solution to facial expression recognition using a quantum machine learning approach.
We define a quantum circuit that manipulates the graphs adjacency matrices encoded into the amplitudes of some appropriately defined quantum states.
arXiv Detail & Related papers (2021-02-09T13:48:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.