Nuclei panoptic segmentation and composition regression with multi-task
deep neural networks
- URL: http://arxiv.org/abs/2202.11804v1
- Date: Wed, 23 Feb 2022 22:09:37 GMT
- Title: Nuclei panoptic segmentation and composition regression with multi-task
deep neural networks
- Authors: Satoshi Kondo, Satoshi Kasai
- Abstract summary: This report describes our proposed method submitted to the Colon Nuclei Identification and Counting (CoNIC) challenge.
Our method employs a multi-task learning framework, which performs a panoptic segmentation task and a regression task.
For the panoptic segmentation task, we use encoder-decoder type deep neural networks predicting a direction map in addition to a segmentation map in order to separate neighboring nuclei into different instances.
- Score: 0.12183405753834559
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Nuclear segmentation, classification and quantification within Haematoxylin &
Eosin stained histology images enables the extraction of interpretable
cell-based features that can be used in downstream explainable models in
computational pathology. The Colon Nuclei Identification and Counting (CoNIC)
Challenge is held to help drive forward research and innovation for automatic
nuclei recognition in computational pathology. This report describes our
proposed method submitted to the CoNIC challenge. Our method employs a
multi-task learning framework, which performs a panoptic segmentation task and
a regression task. For the panoptic segmentation task, we use encoder-decoder
type deep neural networks predicting a direction map in addition to a
segmentation map in order to separate neighboring nuclei into different
instances
Related papers
- A Survey on Cell Nuclei Instance Segmentation and Classification: Leveraging Context and Attention [2.574831636177296]
We conduct a survey on context and attention methods for cell nuclei instance segmentation and classification from H&E-stained microscopy imaging.
We extend both a general instance segmentation and classification method (Mask-RCNN) and a tailored cell nuclei instance segmentation and classification model (HoVer-Net) with context- and attention-based mechanisms.
Our findings suggest translating that domain knowledge into algorithm design is no trivial task, but to fully exploit these mechanisms should be addressed.
arXiv Detail & Related papers (2024-07-26T11:30:22Z) - AWGUNET: Attention-Aided Wavelet Guided U-Net for Nuclei Segmentation in Histopathology Images [26.333686941245197]
We present a segmentation approach that combines the U-Net architecture with a DenseNet-121 backbone.
Our model introduces the Wavelet-guided channel attention module to enhance cell boundary delineation.
The experimental results conducted on two publicly accessible histopathology datasets, namely Monuseg and TNBC, underscore the superiority of our proposed model.
arXiv Detail & Related papers (2024-06-12T17:10:27Z) - Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
The present work describes multilayer multiset neuronal networks incorporating two or more layers of coincidence similarity neurons.
The work also explores the utilization of counter-prototype points, which are assigned to the image regions to be avoided.
arXiv Detail & Related papers (2023-08-28T12:55:13Z) - Structure Embedded Nucleus Classification for Histopathology Images [51.02953253067348]
Most neural network based methods are affected by the local receptive field of convolutions.
We propose a novel polygon-structure feature learning mechanism that transforms a nucleus contour into a sequence of points sampled in order.
Next, we convert a histopathology image into a graph structure with nuclei as nodes, and build a graph neural network to embed the spatial distribution of nuclei into their representations.
arXiv Detail & Related papers (2023-02-22T14:52:06Z) - CoNIC: Colon Nuclei Identification and Counting Challenge 2022 [5.23834975053771]
We organise the Colon Nuclei Identification and Counting (CoNIC) Challenge.
It encourages researchers to develop algorithms that perform segmentation, classification and counting of nuclei.
As part of this challenge we will also test the sensitivity of each submitted algorithm to certain input variations.
arXiv Detail & Related papers (2021-11-29T12:06:47Z) - PointNu-Net: Keypoint-assisted Convolutional Neural Network for
Simultaneous Multi-tissue Histology Nuclei Segmentation and Classification [23.466331358975044]
We study and design a new method to simultaneously detect, segment, and classify nuclei from Haematoxylin and Eosin stained histopathology data.
We demonstrate the superior performance of our proposed approach for nuclei segmentation and classification across 19 different tissue types.
arXiv Detail & Related papers (2021-11-01T08:29:40Z) - Bend-Net: Bending Loss Regularized Multitask Learning Network for Nuclei
Segmentation in Histopathology Images [65.47507533905188]
We propose a novel multitask learning network with a bending loss regularizer to separate overlapped nuclei accurately.
The newly proposed multitask learning architecture enhances the generalization by learning shared representation from three tasks.
The proposed bending loss defines high penalties to concave contour points with large curvatures, and applies small penalties to convex contour points with small curvatures.
arXiv Detail & Related papers (2021-09-30T17:29:44Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Instance-aware Self-supervised Learning for Nuclei Segmentation [47.07869311690419]
We propose a novel self-supervised learning framework to exploit the capacity of convolutional neural networks (CNNs) on the nuclei instance segmentation task.
The proposed approach involves two sub-tasks, which enable neural networks to implicitly leverage the prior-knowledge of nuclei size and quantity.
Experimental results on the publicly available MoNuSeg dataset show that the proposed self-supervised learning approach can remarkably boost the segmentation accuracy of nuclei instance.
arXiv Detail & Related papers (2020-07-22T03:37:14Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
We propose a novel weakly supervised segmentation framework based on partial points annotation.
We show that our method can achieve competitive performance compared to the fully supervised counterpart and the state-of-the-art methods.
arXiv Detail & Related papers (2020-07-10T15:41:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.