Dissipative time crystal in an atom-cavity system: Influence of trap and
competing interactions
- URL: http://arxiv.org/abs/2202.11952v2
- Date: Mon, 18 Apr 2022 15:44:32 GMT
- Title: Dissipative time crystal in an atom-cavity system: Influence of trap and
competing interactions
- Authors: Richelle Jade L. Tuquero, Jim Skulte, Ludwig Mathey, Jayson G. Cosme
- Abstract summary: We show the persistence of long-lived dissipative time crystals beyond the idealized limit.
We show the emergence of metastable dissipative time crystals with and without prethermalization plateaus.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While the recently realized dissipative time crystal in a laser-pumped
atom-cavity system in the experiment of Ke{\ss}ler et al. [Phys. Rev. Lett.
127, 043602 (2021)] is qualitatively consistent with a theoretical description
in an idealized limit, here, we investigate the stability of this dissipative
time crystal in the presence of an inhomogeneous potential provided by a
harmonic trap, and competing short- and infinite-range interactions. We note
that these features are ubiquitous in any realization of atom-cavity systems.
By mapping out the dynamical phase diagram and studying how it is modified by
the harmonic trap and short-range interactions, we demonstrate the persistence
of long-lived dissipative time crystals beyond the idealized limit. We show the
emergence of metastable dissipative time crystals with and without
prethermalization plateaus for tight harmonic confinement and strong contact
interaction, respectively.
Related papers
- Equilibrium and nonequilibrium steady states with the repeated interaction protocol: Relaxation dynamics and energetic cost [44.99833362998488]
We study the dynamics of a qubit system interacting with thermalized bath-ancilla spins via a repeated interaction scheme.
Our key finding is that deterministic system-ancilla interactions do not typically result in the system thermalizing to the thermal state of the ancilla.
arXiv Detail & Related papers (2025-01-09T17:35:36Z) - Thermodynamics of coupled time crystals with an application to energy storage [0.0]
We study the thermodynamics and fluctuating behavior of two interacting boundary time crystals.
We exploit our theoretical derivation to explore possible applications of time crystals as quantum batteries.
arXiv Detail & Related papers (2024-11-07T16:21:26Z) - Observation of a time crystal comb in a driven-dissipative system with Rydberg gas [2.4898174182192974]
Time crystals manifest as stable and periodic behavior that breaks time translation symmetry.
In an open quantum system, many-body interaction subjected to dissipation allows one to develop the time crystalline order in an unprecedented way.
We report the observation of a time crystal comb in the continuously driven-dissipative and strongly interacting Rydberg thermal gas.
arXiv Detail & Related papers (2024-02-20T16:09:29Z) - Discrete Time Crystal Phase of Higher Dimensional Integrable Models [0.0]
This paper investigates the possibility of generating Floquet-time crystals in higher dimensions.
The realization leads to rigid time-crystal phases that are ideally resistant to thermalization and decoherence.
We discuss the significance of studying the highly persistent subharmonic responses and their implementation in a Kitaev spin liquid.
arXiv Detail & Related papers (2024-02-11T19:05:56Z) - In-situ-tunable spin-spin interactions in a Penning trap with in-bore
optomechanics [41.94295877935867]
We present an optomechanical system for in-situ tuning of the coherent spin-motion and spin-spin interaction strength.
We characterize the system using measurements of the induced mean-field spin precession.
These experiments show approximately a $times2$ variation in the ratio of the coherent to incoherent interaction strength.
arXiv Detail & Related papers (2024-01-31T11:00:39Z) - Dissipative time crystal in a strongly interacting Rydberg gas [14.07614057267722]
We report the experimental observation of such dissipative time crystalline order in a room-temperature atomic gas.
The observed limit cycles arise from the coexistence and competition between distinct Rydberg components.
The nondecaying autocorrelation of the oscillation, together with the robustness against temporal noises, indicate the establishment of true long-range temporal order.
arXiv Detail & Related papers (2023-05-31T17:44:32Z) - Quantum trajectories of dissipative time-crystals [0.0]
We show that the photon count signal as well as the homodyne current allow to identify and characterize critical behavior at the time-crystal phase transition.
The average time between these fluctuation events shows a power-law scaling with system size.
We furthermore show that the time-integrated homodyne current can serve as a useful dynamical order parameter.
arXiv Detail & Related papers (2022-12-13T10:20:00Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.