Discrete Time Crystal Phase of Higher Dimensional Integrable Models
- URL: http://arxiv.org/abs/2402.07279v2
- Date: Fri, 10 May 2024 08:39:07 GMT
- Title: Discrete Time Crystal Phase of Higher Dimensional Integrable Models
- Authors: Rahul Chandra, Analabha Roy,
- Abstract summary: This paper investigates the possibility of generating Floquet-time crystals in higher dimensions.
The realization leads to rigid time-crystal phases that are ideally resistant to thermalization and decoherence.
We discuss the significance of studying the highly persistent subharmonic responses and their implementation in a Kitaev spin liquid.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates the possibility of generating Floquet-time crystals in higher dimensions ($d\geq 2$) through the time-periodic driving of integrable free-fermionic models. The realization leads to rigid time-crystal phases that are ideally resistant to thermalization and decoherence. By utilizing spin-orbit coupling, we are able to realize a robust time-crystal phase that can be detected using novel techniques. Moreover, we discuss the significance of studying the highly persistent subharmonic responses and their implementation in a Kitaev spin liquid, which contributes to our understanding of time translational symmetry breaking and its practical implications.
Related papers
- Thermodynamics of coupled time crystals with an application to energy storage [0.0]
We study the thermodynamics and fluctuating behavior of two interacting boundary time crystals.
We exploit our theoretical derivation to explore possible applications of time crystals as quantum batteries.
arXiv Detail & Related papers (2024-11-07T16:21:26Z) - Subspace-thermal discrete time crystals from phase transitions between different n-tuple discrete time crystals [0.46040036610482665]
We propose a new Floquet time crystal model that responds in arbitrary multiples of the driving period.
Transitions between these time crystals with different periods give rise to a novel phase of matter that we call subspace-thermal discrete time crystals.
arXiv Detail & Related papers (2024-09-04T16:19:43Z) - Boundary Time Crystals as AC sensors: enhancements and constraints [39.58317527488534]
We find an enhanced sensitivity of the BTC when its spins are resonant with the applied AC field.
Despite its long coherence time and multipartite correlations, the entropic cost of the BTC hinders an optimal decoding of the AC field information.
arXiv Detail & Related papers (2024-06-10T13:53:31Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Dissipative time crystal in an atom-cavity system: Influence of trap and
competing interactions [0.0]
We show the persistence of long-lived dissipative time crystals beyond the idealized limit.
We show the emergence of metastable dissipative time crystals with and without prethermalization plateaus.
arXiv Detail & Related papers (2022-02-24T08:17:34Z) - Self-ordered Time Crystals: Periodic Temporal Order Under Quasiperiodic
Driving [0.0]
A discrete time crystal is a non-equilibrium phase of matter characterized by persistent sub-harmonic response to a periodic drive.
We investigate the dynamics of a Lipkin-Meshkov-Glick model under quasiperiodic kicking.
Our results suggest that quasiperiodic driving protocols can provide a promising route for realizing novel non-equilibrium phases of matter.
arXiv Detail & Related papers (2021-09-11T16:42:27Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Phase Space Crystal Vibrations: Chiral Edge States with Preserved
Time-reversal Symmetry [0.0]
We show that atoms subject to a time-periodic drive can give rise to a crystal structure in phase space.
Our work has important implications for the dynamics of 2D charged particles in a strong magnetic field.
arXiv Detail & Related papers (2021-05-14T17:53:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.