論文の概要: DeepFusionMOT: A 3D Multi-Object Tracking Framework Based on
Camera-LiDAR Fusion with Deep Association
- arxiv url: http://arxiv.org/abs/2202.12100v1
- Date: Thu, 24 Feb 2022 13:36:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-25 16:53:35.355310
- Title: DeepFusionMOT: A 3D Multi-Object Tracking Framework Based on
Camera-LiDAR Fusion with Deep Association
- Title(参考訳): DeepFusionMOT:ディープアソシエーションとカメラLiDAR融合に基づく3次元多目的追跡フレームワーク
- Authors: Xiyang Wang, Chunyun Fu, Zhankun Li, Ying Lai, Jiawei He
- Abstract要約: 本稿では,精度と速度の良好なトレードオフを実現するために,カメラ-LiDAR融合型MOT法を提案する。
提案手法は、追跡精度と処理速度の両方の観点から、最先端MOT法に対して明らかな利点を示す。
- 参考スコア(独自算出の注目度): 8.34219107351442
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the recent literature, on the one hand, many 3D multi-object tracking
(MOT) works have focused on tracking accuracy and neglected computation speed,
commonly by designing rather complex cost functions and feature extractors. On
the other hand, some methods have focused too much on computation speed at the
expense of tracking accuracy. In view of these issues, this paper proposes a
robust and fast camera-LiDAR fusion-based MOT method that achieves a good
trade-off between accuracy and speed. Relying on the characteristics of camera
and LiDAR sensors, an effective deep association mechanism is designed and
embedded in the proposed MOT method. This association mechanism realizes
tracking of an object in a 2D domain when the object is far away and only
detected by the camera, and updating of the 2D trajectory with 3D information
obtained when the object appears in the LiDAR field of view to achieve a smooth
fusion of 2D and 3D trajectories. Extensive experiments based on the KITTI
dataset indicate that our proposed method presents obvious advantages over the
state-of-the-art MOT methods in terms of both tracking accuracy and processing
speed. Our code is made publicly available for the benefit of the community
- Abstract(参考訳): 近年の文献では、多くの3dマルチオブジェクトトラッキング(mot)が、より複雑なコスト関数と特徴抽出器を設計することで、精度の追跡と計算速度の無視に焦点を当てている。
一方,いくつかの手法では,追跡精度を犠牲にして計算速度に重きを置いている。
これらの課題を踏まえて,精度と速度のトレードオフを良好に達成する,堅牢で高速なLiDAR融合MOT法を提案する。
カメラとLiDARセンサの特性に基づき,提案したMOT法に効果的なディープアライメント機構を組み込んだ。
この機構は、被写体が遠くてカメラによってのみ検出された場合の2D領域における被写体追跡を実現し、被写体がLiDAR視野に現れたときに得られる3D情報により2D軌跡の更新を行い、2D及び3D軌跡のスムーズな融合を実現する。
KITTIデータセットに基づく大規模な実験により,提案手法は追跡精度と処理速度の両方の観点から,最先端MOT法に対して明らかな優位性を示すことが示された。
私たちのコードはコミュニティの利益のために公開されています
関連論文リスト
- ShaSTA-Fuse: Camera-LiDAR Sensor Fusion to Model Shape and
Spatio-Temporal Affinities for 3D Multi-Object Tracking [26.976216624424385]
3Dマルチオブジェクトトラッキング(MOT)は、自律移動エージェントが安全にシーンをナビゲートするために不可欠である。
我々は,カメラとLiDARセンサ情報を融合した3DMOTフレームワークの開発を目指している。
論文 参考訳(メタデータ) (2023-10-04T02:17:59Z) - CAMO-MOT: Combined Appearance-Motion Optimization for 3D Multi-Object
Tracking with Camera-LiDAR Fusion [34.42289908350286]
3D Multi-object Track (MOT) は、連続的な動的検出時の一貫性を保証する。
LiDAR法で物体の不規則な動きを正確に追跡することは困難である。
複合外観運動最適化(CAMO-MOT)に基づく新しいカメラ-LiDAR融合3DMOTフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-06T14:41:38Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
自律運転における3D知覚のための2つの重要なセンサーは、カメラとLiDARである。
これら2つのモダリティを融合させることで、3次元知覚モデルの性能を大幅に向上させることができる。
我々は、最先端の核融合法を初めてベンチマークした。
論文 参考訳(メタデータ) (2022-05-30T09:35:37Z) - A Lightweight and Detector-free 3D Single Object Tracker on Point Clouds [50.54083964183614]
生のLiDARスキャンにおける物体の点雲は、通常スパースで不完全であるため、正確な目標固有検出を行うのは簡単ではない。
DMTは、複雑な3D検出器の使用を完全に除去する3Dトラッキングネットワークである。
論文 参考訳(メタデータ) (2022-03-08T17:49:07Z) - Joint Multi-Object Detection and Tracking with Camera-LiDAR Fusion for
Autonomous Driving [6.396288020763144]
カメラとLiDARの融合による多対象追跡(MOT)は、オブジェクト検出、親和性計算、データ関連の正確な結果をリアルタイムに要求する。
本稿では、オンライン共同検出・追跡手法と自律運転用ロバストデータアソシエーションを備えた効率的なマルチモーダルMOTフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-10T11:17:05Z) - CFTrack: Center-based Radar and Camera Fusion for 3D Multi-Object
Tracking [9.62721286522053]
本稿では,レーダとカメラセンサの融合に基づく共同物体検出と追跡のためのエンドツーエンドネットワークを提案する。
提案手法では,物体検出に中心型レーダカメラ融合アルゴリズムを用い,物体関連にグリーディアルゴリズムを用いる。
提案手法は,20.0AMOTAを達成し,ベンチマークにおける視覚ベースの3Dトラッキング手法よりも優れる,挑戦的なnuScenesデータセット上で評価する。
論文 参考訳(メタデータ) (2021-07-11T23:56:53Z) - EagerMOT: 3D Multi-Object Tracking via Sensor Fusion [68.8204255655161]
マルチオブジェクトトラッキング(MOT)により、移動ロボットは周囲の物体を3次元空間と時間で位置づけすることで、良好な動作計画とナビゲーションを行うことができる。
既存の方法は、深度センサー(例えばLiDAR)を使用して3D空間のターゲットを検出し追跡するが、信号の間隔が限られているため、検出範囲は限られている。
我々は,両方のセンサモダリティから利用可能な物体を全て統合し,シーンのダイナミックスを適切に解釈する簡易なトラッキング定式化であるeagermotを提案する。
論文 参考訳(メタデータ) (2021-04-29T22:30:29Z) - M3DSSD: Monocular 3D Single Stage Object Detector [82.25793227026443]
特徴アライメントと非対称非局所的注意を有するモノクロ3次元単段物体検出器(M3DSSD)を提案する。
提案したM3DSSDは,KITTIデータセット上のモノラルな3Dオブジェクト検出手法よりも大幅に性能が向上する。
論文 参考訳(メタデータ) (2021-03-24T13:09:11Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
周囲の物体の将来の位置を予測し、自律運転などの多くのアプリケーションで観測者の行動を計画するためには、信頼性と正確な3D追跡フレームワークが不可欠である。
移動プラットフォーム上で撮影された2次元画像のシーケンスから,移動物体を時間とともに効果的に関連付け,その全3次元バウンディングボックス情報を推定するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-12T15:30:02Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
既存の手法では、2つのステップでこの問題に対処する: 第一深度推定を行い、その深さ推定から擬似LiDAR点雲表現を計算し、3次元空間で物体検出を行う。
この2つのタスクを同一のメトリック空間で統一するモデルを提案する。
提案手法は,既存の手法と比較して推定時間を大幅に削減し,挑戦的なKITTIベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-01-17T05:11:38Z) - Relation3DMOT: Exploiting Deep Affinity for 3D Multi-Object Tracking
from View Aggregation [8.854112907350624]
3Dマルチオブジェクトトラッキングは、自律ナビゲーションにおいて重要な役割を果たす。
多くのアプローチでは、トラッキングのための2次元RGBシーケンス内のオブジェクトを検出するが、これは3次元空間内のオブジェクトをローカライズする際の信頼性の欠如である。
本稿では,隣接フレーム内の各オブジェクト間の相関をよりよく活用するために,RelationConvという新しい畳み込み演算を提案する。
論文 参考訳(メタデータ) (2020-11-25T16:14:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。