論文の概要: Debugging Differential Privacy: A Case Study for Privacy Auditing
- arxiv url: http://arxiv.org/abs/2202.12219v1
- Date: Thu, 24 Feb 2022 17:31:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-25 17:24:38.221217
- Title: Debugging Differential Privacy: A Case Study for Privacy Auditing
- Title(参考訳): 差別化プライバシのデバッグ:プライバシ監査のケーススタディ
- Authors: Florian Tramer, Andreas Terzis, Thomas Steinke, Shuang Song, Matthew
Jagielski, Nicholas Carlini
- Abstract要約: 監査は、微分プライベートなスキームの欠陥を見つけるためにも利用できることを示す。
このケーススタディでは、微分プライベートなディープラーニングアルゴリズムの最近のオープンソース実装を監査し、99.9999999999%の信頼を得て、この実装が要求される差分プライバシー保証を満たさないことを発見した。
- 参考スコア(独自算出の注目度): 60.87570714269048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differential Privacy can provide provable privacy guarantees for training
data in machine learning. However, the presence of proofs does not preclude the
presence of errors. Inspired by recent advances in auditing which have been
used for estimating lower bounds on differentially private algorithms, here we
show that auditing can also be used to find flaws in (purportedly)
differentially private schemes. In this case study, we audit a recent open
source implementation of a differentially private deep learning algorithm and
find, with 99.99999999% confidence, that the implementation does not satisfy
the claimed differential privacy guarantee.
- Abstract(参考訳): Differential Privacyは、機械学習でデータをトレーニングするための、証明可能なプライバシー保証を提供する。
しかし、証明の存在は誤りの存在を妨げない。
微分プライベートアルゴリズムにおける下限推定に用いられてきた近年の監査の進歩に触発されて、この監査は(おそらく)微分プライベートスキームにおける欠陥を見つけるためにも利用できることを示した。
このケーススタディでは、微分プライベートなディープラーニングアルゴリズムの最近のオープンソース実装を監査し、99.9999999999%の信頼を得て、この実装が要求される差分プライバシー保証を満たさないことを発見した。
関連論文リスト
- Masked Differential Privacy [64.32494202656801]
本稿では,差分プライバシーを適用した機密領域を制御できる「マスク型差分プライバシー(DP)」という効果的なアプローチを提案する。
提案手法はデータに基づいて選択的に動作し,DPアプリケーションや差分プライバシーをデータサンプル内の他のプライバシー技術と組み合わせることなく,非感性時間領域を定義できる。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - Uncertainty quantification by block bootstrap for differentially private stochastic gradient descent [1.0742675209112622]
Gradient Descent (SGD) は機械学習において広く使われているツールである。
ブートストラップによるSGDの不確実性定量化(UQ)は、いくつかの著者によって解決されている。
本稿では,ローカルな差分プライバシーの下でSGDのブロックブートストラップを提案する。
論文 参考訳(メタデータ) (2024-05-21T07:47:21Z) - Auditing Private Prediction [45.23153167486169]
PATE, CaPC, PromptPATE, Private-kNNの4つのプライベート予測アルゴリズムのプライバシー漏洩について検討した。
実験の結果, (i) プライベート予測のプライバシー分析は改善され, (ii) 有害なアルゴリズムは, はるかに高いプライバシー侵害を引き起こし, (iii) プライバシー漏洩は, クエリ制御のない敵に対して, 完全制御のアルゴリズムよりも有意に低いことがわかった。
論文 参考訳(メタデータ) (2024-02-14T18:59:27Z) - Training Private Models That Know What They Don't Know [40.19666295972155]
いくつかの一般的な選択的予測手法は、差分的にプライベートな環境では効果がないことがわかった。
モデルユーティリティレベルを越えた選択予測性能を分離する新しい評価機構を提案する。
論文 参考訳(メタデータ) (2023-05-28T12:20:07Z) - Tight Auditing of Differentially Private Machine Learning [77.38590306275877]
プライベート機械学習では、既存の監査メカニズムは厳格である。
彼らは不確実な最悪の仮定の下でのみ厳密な見積もりを行う。
我々は、自然(逆向きではない)データセットの厳密なプライバシー推定を得られる改善された監査スキームを設計する。
論文 参考訳(メタデータ) (2023-02-15T21:40:33Z) - A General Framework for Auditing Differentially Private Machine Learning [27.99806936918949]
本稿では,差分プライベートな学習者によって与えられるプライバシ保証を統計的に評価する枠組みを提案する。
本研究は、微分プライベート機械学習実装のプライバシを実証的に評価する一般的な手法を開発する。
論文 参考訳(メタデータ) (2022-10-16T21:34:18Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
我々は、属性ごとのプライバシー保証を定量化できる部分微分プライバシー(DP)について検討する。
本研究では,複数の基本データ分析および学習タスクについて検討し,属性ごとのプライバシパラメータが個人全体のプライバシーパラメータよりも小さい設計アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2022-09-08T22:43:50Z) - Private Domain Adaptation from a Public Source [48.83724068578305]
我々は、公開ラベル付きデータを持つソースドメインから、未ラベル付きプライベートデータを持つターゲットドメインへの適応のための差分プライベート離散性に基づくアルゴリズムを設計する。
我々の解は、Frank-WolfeとMirror-Descentアルゴリズムのプライベートな変種に基づいている。
論文 参考訳(メタデータ) (2022-08-12T06:52:55Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
DP-SGDで訓練されたモデルをリリースする際の個々の事例に対するプライバシー保証を特徴付ける。
ほとんどの例では、最悪のケースよりも強力なプライバシー保証を享受しています。
これは、モデルユーティリティの観点からは守られないグループが同時に、より弱いプライバシー保証を経験することを意味する。
論文 参考訳(メタデータ) (2022-06-06T13:49:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。