RescueNet: A High Resolution UAV Semantic Segmentation Benchmark Dataset for Natural Disaster Damage Assessment
- URL: http://arxiv.org/abs/2202.12361v4
- Date: Fri, 17 May 2024 15:17:34 GMT
- Title: RescueNet: A High Resolution UAV Semantic Segmentation Benchmark Dataset for Natural Disaster Damage Assessment
- Authors: Maryam Rahnemoonfar, Tashnim Chowdhury, Robin Murphy,
- Abstract summary: RescueNet comprises post-disaster images collected after Hurricane Michael.
RescueNet provides pixel-level annotations for all classes, including buildings, roads, pools, trees, and more.
We evaluate the utility of the dataset by implementing state-of-the-art segmentation models on RescueNet.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advancements in computer vision and deep learning techniques have facilitated notable progress in scene understanding, thereby assisting rescue teams in achieving precise damage assessment. In this paper, we present RescueNet, a meticulously curated high-resolution post-disaster dataset that includes detailed classification and semantic segmentation annotations. This dataset aims to facilitate comprehensive scene understanding in the aftermath of natural disasters. RescueNet comprises post-disaster images collected after Hurricane Michael, obtained using Unmanned Aerial Vehicles (UAVs) from multiple impacted regions. The uniqueness of RescueNet lies in its provision of high-resolution post-disaster imagery, accompanied by comprehensive annotations for each image. Unlike existing datasets that offer annotations limited to specific scene elements such as buildings, RescueNet provides pixel-level annotations for all classes, including buildings, roads, pools, trees, and more. Furthermore, we evaluate the utility of the dataset by implementing state-of-the-art segmentation models on RescueNet, demonstrating its value in enhancing existing methodologies for natural disaster damage assessment.
Related papers
- Unsupervised Restoration of Weather-affected Images using Deep Gaussian
Process-based CycleGAN [92.15895515035795]
We describe an approach for supervising deep networks that are based on CycleGAN.
We introduce new losses for training CycleGAN that lead to more effective training, resulting in high-quality reconstructions.
We demonstrate that the proposed method can be effectively applied to different restoration tasks like de-raining, de-hazing and de-snowing.
arXiv Detail & Related papers (2022-04-23T01:30:47Z) - Self-Supervised Video Object Segmentation via Cutout Prediction and
Tagging [117.73967303377381]
We propose a novel self-supervised Video Object (VOS) approach that strives to achieve better object-background discriminability.
Our approach is based on a discriminative learning loss formulation that takes into account both object and background information.
Our proposed approach, CT-VOS, achieves state-of-the-art results on two challenging benchmarks: DAVIS-2017 and Youtube-VOS.
arXiv Detail & Related papers (2022-04-22T17:53:27Z) - Residual Moment Loss for Medical Image Segmentation [56.72261489147506]
Location information is proven to benefit the deep learning models on capturing the manifold structure of target objects.
Most existing methods encode the location information in an implicit way, for the network to learn.
We propose a novel loss function, namely residual moment (RM) loss, to explicitly embed the location information of segmentation targets.
arXiv Detail & Related papers (2021-06-27T09:31:49Z) - Attention Based Semantic Segmentation on UAV Dataset for Natural
Disaster Damage Assessment [0.7614628596146599]
We implement a novel self-attention based semantic segmentation model on a high resolution UAV dataset.
The result inspires to use self-attention schemes in natural disaster damage assessment which will save human lives and reduce economic losses.
arXiv Detail & Related papers (2021-05-30T13:39:03Z) - FloodNet: A High Resolution Aerial Imagery Dataset for Post Flood Scene
Understanding [0.9786690381850354]
FloodNet is a high resolution UAV imagery, captured after the hurricane Harvey.
This dataset demonstrates the post flooded damages of the affected areas.
With the advancement of deep learning algorithms, we can analyze the impact of any disaster which can make a precise understanding of the affected areas.
arXiv Detail & Related papers (2020-12-05T05:15:36Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
We introduce a self-supervised detection and segmentation approach that can work with single images captured by a potentially moving camera.
We exploit a self-supervised loss function that we exploit to train a proposal-based segmentation network.
We apply our method to human detection and segmentation in images that visually depart from those of standard benchmarks and outperform existing self-supervised methods.
arXiv Detail & Related papers (2020-11-11T08:34:40Z) - Comprehensive Semantic Segmentation on High Resolution UAV Imagery for
Natural Disaster Damage Assessment [0.26249027950824505]
We present a large-scale hurricane Michael dataset for visual perception in disaster scenarios.
We analyze state-of-the-art deep neural network models for semantic segmentation.
arXiv Detail & Related papers (2020-09-02T17:07:28Z) - Improving Emergency Response during Hurricane Season using Computer
Vision [0.06882042556551608]
We have developed a framework for crisis response and management that incorporates the latest technologies in computer vision (CV), inland flood prediction, damage assessment and data visualization.
Our computer-vision model analyzes spaceborne and airborne imagery to detect relevant features during and after a natural disaster.
We have designed an ensemble of models to identify features including water, roads, buildings, and vegetation from the imagery.
arXiv Detail & Related papers (2020-08-17T15:42:02Z) - MSNet: A Multilevel Instance Segmentation Network for Natural Disaster
Damage Assessment in Aerial Videos [74.22132693931145]
We study the problem of efficiently assessing building damage after natural disasters like hurricanes, floods or fires.
The first contribution is a new dataset, consisting of user-generated aerial videos from social media with annotations of instance-level building damage masks.
The second contribution is a new model, namely MSNet, which contains novel region proposal network designs.
arXiv Detail & Related papers (2020-06-30T02:23:05Z) - Deep Learning-based Aerial Image Segmentation with Open Data for
Disaster Impact Assessment [11.355723874379317]
A framework utilising segmentation neural networks is proposed to identify impacted areas and accessible roads in post-disaster scenarios.
The effectiveness of pretraining with ImageNet on the task of aerial image segmentation has been analysed.
Experiments on data from the 2018 tsunami that struck Palu, Indonesia show the effectiveness of the proposed framework.
arXiv Detail & Related papers (2020-06-10T00:19:58Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNet is a unified model that can simultaneously segment buildings and assess the damage levels to individual buildings and can be trained end-to-end.
RescueNet is tested on the large scale and diverse xBD dataset and achieves significantly better building segmentation and damage classification performance than previous methods.
arXiv Detail & Related papers (2020-04-15T19:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.