Residual Moment Loss for Medical Image Segmentation
- URL: http://arxiv.org/abs/2106.14178v1
- Date: Sun, 27 Jun 2021 09:31:49 GMT
- Title: Residual Moment Loss for Medical Image Segmentation
- Authors: Quanziang Wang, Renzhen Wang, Yuexiang Li, Kai Ma, Yefeng Zheng, Deyu
Meng
- Abstract summary: Location information is proven to benefit the deep learning models on capturing the manifold structure of target objects.
Most existing methods encode the location information in an implicit way, for the network to learn.
We propose a novel loss function, namely residual moment (RM) loss, to explicitly embed the location information of segmentation targets.
- Score: 56.72261489147506
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Location information is proven to benefit the deep learning models on
capturing the manifold structure of target objects, and accordingly boosts the
accuracy of medical image segmentation. However, most existing methods encode
the location information in an implicit way, e.g. the distance transform maps,
which describe the relative distance from each pixel to the contour boundary,
for the network to learn. These implicit approaches do not fully exploit the
position information (i.e. absolute location) of targets. In this paper, we
propose a novel loss function, namely residual moment (RM) loss, to explicitly
embed the location information of segmentation targets during the training of
deep learning networks. Particularly, motivated by image moments, the
segmentation prediction map and ground-truth map are weighted by coordinate
information. Then our RM loss encourages the networks to maintain the
consistency between the two weighted maps, which promotes the segmentation
networks to easily locate the targets and extract manifold-structure-related
features. We validate the proposed RM loss by conducting extensive experiments
on two publicly available datasets, i.e., 2D optic cup and disk segmentation
and 3D left atrial segmentation. The experimental results demonstrate the
effectiveness of our RM loss, which significantly boosts the accuracy of
segmentation networks.
Related papers
- PI-Att: Topology Attention for Segmentation Networks through Adaptive Persistence Image Representation [1.4680035572775534]
We introduce a new topology-aware loss function, which explicitly forces the network to minimize the topological dissimilarity between the ground truth and prediction maps.
We quantify the topology of each map by the persistence image representation, for the first time in the context of a segmentation network loss.
The effectiveness of the proposed PI-Att loss is demonstrated on two different datasets for aorta and great vessel segmentation in computed tomography images.
arXiv Detail & Related papers (2024-08-15T09:06:49Z) - Unsupervised Domain Adaptation for Medical Image Segmentation via
Feature-space Density Matching [0.0]
This paper presents an unsupervised domain adaptation approach for semantic segmentation.
We match the target data distribution to the source in the feature space, particularly when the number of target samples is limited.
We demonstrate the efficacy of our proposed approach on 2 datasets, multisite prostate MRI and histopathology images.
arXiv Detail & Related papers (2023-05-09T22:24:46Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Improving Lidar-Based Semantic Segmentation of Top-View Grid Maps by
Learning Features in Complementary Representations [3.0413873719021995]
We introduce a novel way to predict semantic information from sparse, single-shot LiDAR measurements in the context of autonomous driving.
The approach is aimed specifically at improving the semantic segmentation of top-view grid maps.
For each representation a tailored deep learning architecture is developed to effectively extract semantic information.
arXiv Detail & Related papers (2022-03-02T14:49:51Z) - TC-Net: Triple Context Network for Automated Stroke Lesion Segmentation [0.5482532589225552]
We propose a new network, Triple Context Network (TC-Net), with the capture of spatial contextual information as the core.
Our network is evaluated on the open dataset ATLAS, achieving the highest score of 0.594, Hausdorff distance of 27.005 mm, and average symmetry surface distance of 7.137 mm.
arXiv Detail & Related papers (2022-02-28T11:12:16Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
We tackle the detection of out-of-distribution (OOD) objects in semantic segmentation.
Our main contribution is a new OOD detection architecture called ObsNet associated with a dedicated training scheme based on Local Adversarial Attacks (LAA)
We show it obtains top performances both in speed and accuracy when compared to ten recent methods of the literature on three different datasets.
arXiv Detail & Related papers (2021-08-03T17:09:56Z) - Unsupervised Metric Relocalization Using Transform Consistency Loss [66.19479868638925]
Training networks to perform metric relocalization traditionally requires accurate image correspondences.
We propose a self-supervised solution, which exploits a key insight: localizing a query image within a map should yield the same absolute pose, regardless of the reference image used for registration.
We evaluate our framework on synthetic and real-world data, showing our approach outperforms other supervised methods when a limited amount of ground-truth information is available.
arXiv Detail & Related papers (2020-11-01T19:24:27Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
We propose a pairwise relation-based semi-supervised (PRS2) model for gland segmentation on histology images.
This model consists of a segmentation network (S-Net) and a pairwise relation network (PR-Net)
We evaluate our model against five recent methods on the GlaS dataset and three recent methods on the CRAG dataset.
arXiv Detail & Related papers (2020-08-06T15:02:38Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
We propose a new framework called Ventral-Dorsal Networks (VDNets)
Inspired by the structure of the human visual system, we propose the integration of a "Ventral Network" and a "Dorsal Network"
Our experimental results reveal that the proposed method outperforms state-of-the-art object detection approaches.
arXiv Detail & Related papers (2020-05-15T23:57:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.