論文の概要: GAME-ON: Graph Attention Network based Multimodal Fusion for Fake News Detection
- arxiv url: http://arxiv.org/abs/2202.12478v3
- Date: Wed, 12 Jun 2024 06:54:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 02:02:19.060338
- Title: GAME-ON: Graph Attention Network based Multimodal Fusion for Fake News Detection
- Title(参考訳): GAME-ON: フェイクニュース検出のためのグラフ注意ネットワークに基づくマルチモーダルフュージョン
- Authors: Mudit Dhawan, Shakshi Sharma, Aditya Kadam, Rajesh Sharma, Ponnurangam Kumaraguru,
- Abstract要約: 我々は,マルチモーダルフェイクニュース検出のためのより堅牢なデータ表現を学習するための,グラフニューラルネットワークに基づくエンドツーエンドトレーニング可能なフレームワークであるGAME-ONを提案する。
当社のモデルはTwitter上で平均11%向上し、Weiboでは2.6%のマージンで競争力を維持する一方で、最も優れた最先端ベースラインよりも65%少ないパラメータを使用する。
- 参考スコア(独自算出の注目度): 6.037721620350107
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social media in present times has a significant and growing influence. Fake news being spread on these platforms have a disruptive and damaging impact on our lives. Furthermore, as multimedia content improves the visibility of posts more than text data, it has been observed that often multimedia is being used for creating fake content. A plethora of previous multimodal-based work has tried to address the problem of modeling heterogeneous modalities in identifying fake content. However, these works have the following limitations: (1) inefficient encoding of inter-modal relations by utilizing a simple concatenation operator on the modalities at a later stage in a model, which might result in information loss; (2) training very deep neural networks with a disproportionate number of parameters on small but complex real-life multimodal datasets result in higher chances of overfitting. To address these limitations, we propose GAME-ON, a Graph Neural Network based end-to-end trainable framework that allows granular interactions within and across different modalities to learn more robust data representations for multimodal fake news detection. We use two publicly available fake news datasets, Twitter and Weibo, for evaluations. Our model outperforms on Twitter by an average of 11% and keeps competitive performance on Weibo, within a 2.6% margin, while using 65% fewer parameters than the best comparable state-of-the-art baseline.
- Abstract(参考訳): 現代のソーシャルメディアは影響力を増している。
これらのプラットフォームに広がるフェイクニュースは、私たちの生活に破壊的かつ有害な影響を与えます。
さらに、マルチメディアコンテンツはテキストデータよりも投稿の可視性を向上するので、しばしばマルチメディアが偽コンテンツの作成に利用されていることが観察されている。
過去のマルチモーダルベースの研究は、偽コンテンツを特定する際に不均一なモダリティをモデル化する問題に対処しようと試みてきた。
しかし,これらの研究は,(1)後段のモデルにおけるモダリティに対する単純な連結演算子の利用によるモーダル間関係の非効率な符号化,(2)小さいが複雑な実生活のマルチモーダルデータセット上でパラメータの不均等な数で非常に深いニューラルネットワークを訓練することにより,オーバーフィッティングの可能性が高くなる,という制限がある。
これらの制限に対処するため,グラフニューラルネットワークに基づくエンドツーエンドのトレーニング可能なフレームワークであるGAME-ONを提案する。
評価には、TwitterとWeiboという2つの偽ニュースデータセットを公開しています。
当社のモデルはTwitter上で平均11%向上し、Weiboでは2.6%のマージンで競争力を維持する一方で、最も優れた最先端ベースラインよりも65%少ないパラメータを使用する。
関連論文リスト
- Multi-modal Crowd Counting via a Broker Modality [64.5356816448361]
マルチモーダルな群衆カウントは、視覚画像と熱/深度画像の両方から群衆密度を推定する。
本稿では,補助的ブローカーのモダリティを導入し,そのタスクを3つのモーダル学習問題とする新しい手法を提案する。
我々はこのブローカーのモダリティを生成するための融合法を考案し、近代的な拡散に基づく核融合モデルの非拡散的軽量化を生かした。
論文 参考訳(メタデータ) (2024-07-10T10:13:11Z) - How to Train Your Fact Verifier: Knowledge Transfer with Multimodal Open Models [95.44559524735308]
大規模言語またはマルチモーダルモデルに基づく検証は、偽コンテンツや有害コンテンツの拡散を緩和するためのオンラインポリシングメカニズムをスケールアップするために提案されている。
我々は,知識伝達の初期研究を通じて,継続的な更新を行うことなく基礎モデルの性能向上の限界をテストする。
最近の2つのマルチモーダルなファクトチェックベンチマークであるMochegとFakedditの結果は、知識伝達戦略がファクドディットのパフォーマンスを最先端よりも1.7%向上し、Mochegのパフォーマンスを2.9%向上させることができることを示唆している。
論文 参考訳(メタデータ) (2024-06-29T08:39:07Z) - Enhancing Fake News Detection in Social Media via Label Propagation on Cross-modal Tweet Graph [19.409935976725446]
ソーシャルメディアにおける偽ニュースを検出する新しい方法を提案する。
我々の手法は、より密な相互作用をよりよく捉えるために、グラフの接続性を高める。
評価には、Twitter、PHEME、Weiboの3つの公開フェイクニュースデータセットを使用します。
論文 参考訳(メタデータ) (2024-06-14T09:55:54Z) - Robust Domain Misinformation Detection via Multi-modal Feature Alignment [49.89164555394584]
マルチモーダルな誤情報検出のための頑健なドメインとクロスモーダルなアプローチを提案する。
テキストと視覚の共役分布を整列させることにより、ドメインシフトを低減する。
また,ドメイン一般化のアプリケーションシナリオを同時に検討するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-24T07:06:16Z) - GRaMuFeN: Graph-based Multi-modal Fake News Detection in Social Media [0.0]
本研究では,ニュースのテキストコンテンツと画像コンテンツの両方を分析し,偽コンテンツを検出するモデルGraMuFeNを提案する。
GraMuFeNはテキストエンコーダとイメージエンコーダの2つの主要コンポーネントから構成される。
テキスト分析では、GraMuFeNは各テキストをグラフとして扱い、グラフ畳み込みニューラルネットワーク(GCN)をテキストエンコーダとして使用する。
論文 参考訳(メタデータ) (2023-10-11T17:17:40Z) - Detecting and Grounding Multi-Modal Media Manipulation and Beyond [93.08116982163804]
マルチモーダルフェイクメディア(DGM4)の新たな研究課題について述べる。
DGM4は、マルチモーダルメディアの真正性を検出するだけでなく、操作されたコンテンツも検出することを目的としている。
本稿では,異なるモーダル間のきめ細かい相互作用を完全に捉えるために,新しい階層型マルチモーダルマニピュレーションrEasoning tRansformer(HAMMER)を提案する。
論文 参考訳(メタデータ) (2023-09-25T15:05:46Z) - Inconsistent Matters: A Knowledge-guided Dual-consistency Network for
Multi-modal Rumor Detection [53.48346699224921]
マルチメディアコンテンツによる噂を検出するために,知識誘導型二元整合ネットワークを提案する。
2つの一貫性検出ツールを使用して、クロスモーダルレベルとコンテント知識レベルの不整合を同時にキャプチャする。
また、異なる視覚的モダリティ条件下で頑健なマルチモーダル表現学習を可能にする。
論文 参考訳(メタデータ) (2023-06-03T15:32:20Z) - Multi-modal Fake News Detection on Social Media via Multi-grained
Information Fusion [21.042970740577648]
偽ニュース検出のためのMMFN(Multi-fine Multi-modal Fusion Network)を提案する。
そこで我々は,トランスフォーマーを用いた事前学習モデルを用いて,テキストと画像からトークンレベルの特徴を符号化する。
マルチモーダルモジュールは、CLIPエンコーダでエンコードされた粗い機能を考慮して、きめ細かい機能をフューズする。
論文 参考訳(メタデータ) (2023-04-03T09:13:59Z) - SEMI-FND: Stacked Ensemble Based Multimodal Inference For Faster Fake
News Detection [1.885336013528858]
フェイクニュースを迅速かつ正確に識別することが義務づけられている。
SEMI-FNDは、全パラメータを少なくとも20%削減し、テキストの単調パラメトリックを60%削減する。
重ねられたアンサンブルの適用は、他のアプローチよりもFNDを大幅に改善する。
論文 参考訳(メタデータ) (2022-05-17T07:51:55Z) - Multimodal Fake News Detection [1.929039244357139]
単調な手法とマルチモーダル手法の両方を用いて、ファケディットデータセット上のフェイクニュースのきめ細かい分類を行う。
操作されたコンテンツ、Satire、False接続などの偽ニュースカテゴリは、画像の使用の恩恵を強く受けている。
画像を使用することで、他のカテゴリの結果も改善されるが、影響は少ない。
論文 参考訳(メタデータ) (2021-12-09T10:57:18Z) - Multimodal Categorization of Crisis Events in Social Media [81.07061295887172]
本稿では,画像とテキストの両方を入力として利用するマルチモーダル融合法を提案する。
特に、弱モダリティから非形式的および誤解を招くコンポーネントをフィルタリングできるクロスアテンションモジュールを導入する。
本手法は,3つの危機関連タスクにおいて,一様アプローチと強いマルチモーダルベースラインを大きなマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-04-10T06:31:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。