論文の概要: Multi-modal Crowd Counting via a Broker Modality
- arxiv url: http://arxiv.org/abs/2407.07518v1
- Date: Wed, 10 Jul 2024 10:13:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 17:01:49.187733
- Title: Multi-modal Crowd Counting via a Broker Modality
- Title(参考訳): ブローカーモダリティによるマルチモーダル集団カウント
- Authors: Haoliang Meng, Xiaopeng Hong, Chenhao Wang, Miao Shang, Wangmeng Zuo,
- Abstract要約: マルチモーダルな群衆カウントは、視覚画像と熱/深度画像の両方から群衆密度を推定する。
本稿では,補助的ブローカーのモダリティを導入し,そのタスクを3つのモーダル学習問題とする新しい手法を提案する。
我々はこのブローカーのモダリティを生成するための融合法を考案し、近代的な拡散に基づく核融合モデルの非拡散的軽量化を生かした。
- 参考スコア(独自算出の注目度): 64.5356816448361
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-modal crowd counting involves estimating crowd density from both visual and thermal/depth images. This task is challenging due to the significant gap between these distinct modalities. In this paper, we propose a novel approach by introducing an auxiliary broker modality and on this basis frame the task as a triple-modal learning problem. We devise a fusion-based method to generate this broker modality, leveraging a non-diffusion, lightweight counterpart of modern denoising diffusion-based fusion models. Additionally, we identify and address the ghosting effect caused by direct cross-modal image fusion in multi-modal crowd counting. Through extensive experimental evaluations on popular multi-modal crowd-counting datasets, we demonstrate the effectiveness of our method, which introduces only 4 million additional parameters, yet achieves promising results. The code is available at https://github.com/HenryCilence/Broker-Modality-Crowd-Counting.
- Abstract(参考訳): マルチモーダルな群衆カウントは、視覚画像と熱/深度画像の両方から群衆密度を推定する。
このタスクは、これらの異なるモダリティの間に大きなギャップがあるため、難しい。
本稿では,補助ブローカーのモダリティの導入による新しい手法を提案する。
我々は,このブローカのモダリティを生成するための融合法を考案し,近代的な拡散に基づく核融合モデルに対する非拡散的軽量なアプローチを生かした。
さらに,マルチモーダル群集カウントにおける画像融合によるゴースト効果の同定と対処を行う。
提案手法の有効性を実証し,400万のパラメータを新たに導入しただけで,有望な結果が得られることを示す。
コードはhttps://github.com/HenryCilence/Broker-Modality-Crowd-Countingで公開されている。
関連論文リスト
- Turbo your multi-modal classification with contrastive learning [17.983460380784337]
本稿では,マルチモーダル理解を促進するために,$Turbo$と呼ばれる新しいコントラスト学習戦略を提案する。
具体的には、マルチモーダルデータペアは、異なる隠されたドロップアウトマスクでフォワードパスを2回送って、各モダリティに対して2つの異なる表現を得る。
これらの表現により、トレーニングのための複数のインモーダルおよびクロスモーダルのコントラスト目的が得られる。
論文 参考訳(メタデータ) (2024-09-14T03:15:34Z) - Multi-modal Crowd Counting via Modal Emulation [41.959740205234446]
モーダルエミュレーションに基づくマルチモーダルクラウドカウントフレームワークを提案する。
フレームワークは、Emphmulti-modal推論パスとEmphcross-modalエミュレーションパスの2つの重要なコンポーネントで構成されている。
RGB-ThermalとRGB-Depthの計数データセットの実験は、従来の手法と比較して優れた性能を示した。
論文 参考訳(メタデータ) (2024-07-28T13:14:57Z) - DiffMM: Multi-Modal Diffusion Model for Recommendation [19.43775593283657]
DiffMMと呼ばれる新しいマルチモーダルグラフ拡散モデルを提案する。
本フレームワークは,モダリティを意識したグラフ拡散モデルとクロスモーダルコントラスト学習パラダイムを統合し,モダリティを意識したユーザ表現学習を改善する。
論文 参考訳(メタデータ) (2024-06-17T17:35:54Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semanticsを紹介する。
我々は,グローバルな特徴とローカルな特徴の効果的な抽出と統合を保証するために,複数のスケールで機能融合を採用している。
実験により,本手法は複数のデータセットにまたがって優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-05-24T08:58:48Z) - Provable Dynamic Fusion for Low-Quality Multimodal Data [94.39538027450948]
動的マルチモーダル融合は、有望な学習パラダイムとして現れる。
広く使われているにもかかわらず、この分野の理論的正当化は依然として顕著に欠落している。
本稿では、一般化の観点から最もポピュラーなマルチモーダル融合フレームワークの下で、この問題に答える理論的理解を提供する。
QMF(Quality-Aware Multimodal Fusion)と呼ばれる新しいマルチモーダル融合フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-03T08:32:35Z) - Efficient Multimodal Fusion via Interactive Prompting [62.08292938484994]
大規模事前学習は、コンピュータビジョンや自然言語処理のような一助的な分野を新しい時代にもたらした。
本稿では,一様事前学習型変圧器の融合に適した効率的かつ柔軟な多モード融合法PMFを提案する。
論文 参考訳(メタデータ) (2023-04-13T07:31:51Z) - Multi-modal Fake News Detection on Social Media via Multi-grained
Information Fusion [21.042970740577648]
偽ニュース検出のためのMMFN(Multi-fine Multi-modal Fusion Network)を提案する。
そこで我々は,トランスフォーマーを用いた事前学習モデルを用いて,テキストと画像からトークンレベルの特徴を符号化する。
マルチモーダルモジュールは、CLIPエンコーダでエンコードされた粗い機能を考慮して、きめ細かい機能をフューズする。
論文 参考訳(メタデータ) (2023-04-03T09:13:59Z) - Unified Discrete Diffusion for Simultaneous Vision-Language Generation [78.21352271140472]
本稿では,「モダリティ変換」タスクと「マルチモダリティ生成」タスクの両方を実行することができる統一型マルチモーダル生成モデルを提案する。
具体的には,マルチモーダル信号の離散拡散過程を統一遷移行列を用いて統一する。
提案手法は, 様々な生成タスクにおいて, 最先端のソリューションと同等に動作可能である。
論文 参考訳(メタデータ) (2022-11-27T14:46:01Z) - Robustness of Fusion-based Multimodal Classifiers to Cross-Modal Content
Dilutions [27.983902791798965]
画像と既存のテキストとの関連性やトピックのコヒーレンスを維持する希釈テキストを生成するモデルを開発する。
その結果,タスク固有の融合型マルチモーダル分類器の性能はそれぞれ23.3%,22.5%低下することがわかった。
我々の研究は、深いマルチモーダルモデルの現実的な変動に対する堅牢性について、さらなる研究をハイライトし、奨励することを目的としている。
論文 参考訳(メタデータ) (2022-11-04T17:58:02Z) - Multi-Modal Mutual Information Maximization: A Novel Approach for
Unsupervised Deep Cross-Modal Hashing [73.29587731448345]
我々はCross-Modal Info-Max Hashing (CMIMH)と呼ばれる新しい手法を提案する。
モーダル内およびモーダル間の類似性を両立できる情報表現を学習する。
提案手法は、他の最先端のクロスモーダル検索手法よりも一貫して優れている。
論文 参考訳(メタデータ) (2021-12-13T08:58:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。