GAME-ON: Graph Attention Network based Multimodal Fusion for Fake News Detection
- URL: http://arxiv.org/abs/2202.12478v3
- Date: Wed, 12 Jun 2024 06:54:19 GMT
- Title: GAME-ON: Graph Attention Network based Multimodal Fusion for Fake News Detection
- Authors: Mudit Dhawan, Shakshi Sharma, Aditya Kadam, Rajesh Sharma, Ponnurangam Kumaraguru,
- Abstract summary: We propose GAME-ON, a Graph Neural Network based end-to-end trainable framework to learn more robust data representations for multimodal fake news detection.
Our model outperforms on Twitter by an average of 11% and keeps competitive performance on Weibo, within a 2.6% margin, while using 65% fewer parameters than the best comparable state-of-the-art baseline.
- Score: 6.037721620350107
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social media in present times has a significant and growing influence. Fake news being spread on these platforms have a disruptive and damaging impact on our lives. Furthermore, as multimedia content improves the visibility of posts more than text data, it has been observed that often multimedia is being used for creating fake content. A plethora of previous multimodal-based work has tried to address the problem of modeling heterogeneous modalities in identifying fake content. However, these works have the following limitations: (1) inefficient encoding of inter-modal relations by utilizing a simple concatenation operator on the modalities at a later stage in a model, which might result in information loss; (2) training very deep neural networks with a disproportionate number of parameters on small but complex real-life multimodal datasets result in higher chances of overfitting. To address these limitations, we propose GAME-ON, a Graph Neural Network based end-to-end trainable framework that allows granular interactions within and across different modalities to learn more robust data representations for multimodal fake news detection. We use two publicly available fake news datasets, Twitter and Weibo, for evaluations. Our model outperforms on Twitter by an average of 11% and keeps competitive performance on Weibo, within a 2.6% margin, while using 65% fewer parameters than the best comparable state-of-the-art baseline.
Related papers
- Multi-modal Crowd Counting via a Broker Modality [64.5356816448361]
Multi-modal crowd counting involves estimating crowd density from both visual and thermal/depth images.
We propose a novel approach by introducing an auxiliary broker modality and frame the task as a triple-modal learning problem.
We devise a fusion-based method to generate this broker modality, leveraging a non-diffusion, lightweight counterpart of modern denoising diffusion-based fusion models.
arXiv Detail & Related papers (2024-07-10T10:13:11Z) - How to Train Your Fact Verifier: Knowledge Transfer with Multimodal Open Models [95.44559524735308]
Large language or multimodal model based verification has been proposed to scale up online policing mechanisms for mitigating spread of false and harmful content.
We test the limits of improving foundation model performance without continual updating through an initial study of knowledge transfer.
Our results on two recent multi-modal fact-checking benchmarks, Mocheg and Fakeddit, indicate that knowledge transfer strategies can improve Fakeddit performance over the state-of-the-art by up to 1.7% and Mocheg performance by up to 2.9%.
arXiv Detail & Related papers (2024-06-29T08:39:07Z) - Enhancing Fake News Detection in Social Media via Label Propagation on Cross-modal Tweet Graph [19.409935976725446]
We present a novel method for detecting fake news in social media.
Our method densifies the graph's connectivity to capture denser interaction better.
We use three publicly available fake news datasets, Twitter, PHEME, and Weibo, for evaluation.
arXiv Detail & Related papers (2024-06-14T09:55:54Z) - Robust Domain Misinformation Detection via Multi-modal Feature Alignment [49.89164555394584]
We propose a robust domain and cross-modal approach for multi-modal misinformation detection.
It reduces the domain shift by aligning the joint distribution of textual and visual modalities.
We also propose a framework that simultaneously considers application scenarios of domain generalization.
arXiv Detail & Related papers (2023-11-24T07:06:16Z) - GRaMuFeN: Graph-based Multi-modal Fake News Detection in Social Media [0.0]
We propose GraMuFeN, a model designed to detect fake content by analyzing both the textual and image content of news.
GraMuFeN comprises two primary components: a text encoder and an image encoder.
For textual analysis, GraMuFeN treats each text as a graph and employs a Graph Convolutional Neural Network (GCN) as the text encoder.
arXiv Detail & Related papers (2023-10-11T17:17:40Z) - Detecting and Grounding Multi-Modal Media Manipulation and Beyond [93.08116982163804]
We highlight a new research problem for multi-modal fake media, namely Detecting and Grounding Multi-Modal Media Manipulation (DGM4)
DGM4 aims to not only detect the authenticity of multi-modal media, but also ground the manipulated content.
We propose a novel HierArchical Multi-modal Manipulation rEasoning tRansformer (HAMMER) to fully capture the fine-grained interaction between different modalities.
arXiv Detail & Related papers (2023-09-25T15:05:46Z) - Inconsistent Matters: A Knowledge-guided Dual-consistency Network for
Multi-modal Rumor Detection [53.48346699224921]
A novel Knowledge-guided Dualconsistency Network is proposed to detect rumors with multimedia contents.
It uses two consistency detectionworks to capture the inconsistency at the cross-modal level and the content-knowledge level simultaneously.
It also enables robust multi-modal representation learning under different missing visual modality conditions.
arXiv Detail & Related papers (2023-06-03T15:32:20Z) - Multi-modal Fake News Detection on Social Media via Multi-grained
Information Fusion [21.042970740577648]
We present a Multi-grained Multi-modal Fusion Network (MMFN) for fake news detection.
Inspired by the multi-grained process of human assessment of news authenticity, we respectively employ two Transformer-based pre-trained models to encode token-level features from text and images.
The multi-modal module fuses fine-grained features, taking into account coarse-grained features encoded by the CLIP encoder.
arXiv Detail & Related papers (2023-04-03T09:13:59Z) - SEMI-FND: Stacked Ensemble Based Multimodal Inference For Faster Fake
News Detection [1.885336013528858]
It has become imperative to identify fake news faster and more accurately.
SEMI-FND offers an overall parameter reduction of at least 20% with unimodal parametric reduction on text being 60%.
It is concluded that the application of a stacked ensembling significantly improves FND over other approaches.
arXiv Detail & Related papers (2022-05-17T07:51:55Z) - Multimodal Fake News Detection [1.929039244357139]
We perform a fine-grained classification of fake news on the Fakeddit dataset using both unimodal and multimodal approaches.
Some fake news categories such as Manipulated content, Satire or False connection strongly benefit from the use of images.
Using images also improves the results of the other categories, but with less impact.
arXiv Detail & Related papers (2021-12-09T10:57:18Z) - Multimodal Categorization of Crisis Events in Social Media [81.07061295887172]
We present a new multimodal fusion method that leverages both images and texts as input.
In particular, we introduce a cross-attention module that can filter uninformative and misleading components from weak modalities.
We show that our method outperforms the unimodal approaches and strong multimodal baselines by a large margin on three crisis-related tasks.
arXiv Detail & Related papers (2020-04-10T06:31:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.