Implicit Optimizer for Diffeomorphic Image Registration
- URL: http://arxiv.org/abs/2202.12498v1
- Date: Fri, 25 Feb 2022 05:04:29 GMT
- Title: Implicit Optimizer for Diffeomorphic Image Registration
- Authors: Kun Han, Shanlin Sun
- Abstract summary: We propose a rapid and accurate Implicit for Diffeomorphic Image Registration (IDIR) which utilizes the Deep Implicit Function as the neural velocity field.
We evaluate our proposed method on two 3D large-scale MR brain scan datasets, the results show that our proposed method provides faster and better registration results than conventional image registration approaches.
- Score: 3.1970342304563037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffeomorphic image registration is the underlying technology in medical
image processing which enables the invertibility and point-to-point
correspondence. Recently, numerous learning-based methods utilizing
convolutional neural networks (CNNs) have been proposed for registration
problems. Compared with the speed boosting, accuracy improvement brought by the
complicated CNN-based methods is minor. To tackle this problem, we propose a
rapid and accurate Implicit Optimizer for Diffeomorphic Image Registration
(IDIR) which utilizes the Deep Implicit Function as the neural velocity field
(NVF) whose input is the point coordinate p and output is velocity vector at
that point v. To reduce the huge memory consumption brought by NVF for 3D
volumes, a sparse sampling is employed to the framework. We evaluate our method
on two 3D large-scale MR brain scan datasets, the results show that our
proposed method provides faster and better registration results than
conventional image registration approaches and outperforms the learning-based
methods by a significant margin while maintaining the desired diffeomorphic
properties.
Related papers
- LeRF: Learning Resampling Function for Adaptive and Efficient Image Interpolation [64.34935748707673]
Recent deep neural networks (DNNs) have made impressive progress in performance by introducing learned data priors.
We propose a novel method of Learning Resampling (termed LeRF) which takes advantage of both the structural priors learned by DNNs and the locally continuous assumption.
LeRF assigns spatially varying resampling functions to input image pixels and learns to predict the shapes of these resampling functions with a neural network.
arXiv Detail & Related papers (2024-07-13T16:09:45Z) - OrientDream: Streamlining Text-to-3D Generation with Explicit Orientation Control [66.03885917320189]
OrientDream is a camera orientation conditioned framework for efficient and multi-view consistent 3D generation from textual prompts.
Our strategy emphasizes the implementation of an explicit camera orientation conditioned feature in the pre-training of a 2D text-to-image diffusion module.
Our experiments reveal that our method not only produces high-quality NeRF models with consistent multi-view properties but also achieves an optimization speed significantly greater than existing methods.
arXiv Detail & Related papers (2024-06-14T13:16:18Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Fast-SNARF: A Fast Deformer for Articulated Neural Fields [92.68788512596254]
We propose a new articulation module for neural fields, Fast-SNARF, which finds accurate correspondences between canonical space and posed space.
Fast-SNARF is a drop-in replacement in to our previous work, SNARF, while significantly improving its computational efficiency.
Because learning of deformation maps is a crucial component in many 3D human avatar methods, we believe that this work represents a significant step towards the practical creation of 3D virtual humans.
arXiv Detail & Related papers (2022-11-28T17:55:34Z) - Non-iterative Coarse-to-fine Registration based on Single-pass Deep
Cumulative Learning [11.795108660250843]
We propose a Non-Iterative Coarse-to-finE registration network (NICE-Net) for deformable image registration.
NICE-Net can outperform state-of-the-art iterative deep registration methods while only requiring similar runtime to non-iterative methods.
arXiv Detail & Related papers (2022-06-25T08:34:59Z) - Medical Image Registration via Neural Fields [35.80302878742334]
We present a new neural net based image registration framework, called NIR (Neural Image Registration), which is based on optimization but utilizes deep neural nets to model deformations between image pairs.
Experiments on two 3D MR brain scan datasets demonstrate that NIR yields state-of-the-art performance in terms of both registration accuracy and regularity, while running significantly faster than traditional optimization-based methods.
arXiv Detail & Related papers (2022-06-07T08:43:31Z) - Affine Medical Image Registration with Coarse-to-Fine Vision Transformer [11.4219428942199]
We present a learning-based algorithm, Coarse-to-Fine Vision Transformer (C2FViT), for 3D affine medical image registration.
Our method is superior to the existing CNNs-based affine registration methods in terms of registration accuracy, robustness and generalizability.
arXiv Detail & Related papers (2022-03-29T03:18:43Z) - Nesterov Accelerated ADMM for Fast Diffeomorphic Image Registration [63.15453821022452]
Recent developments in approaches based on deep learning have achieved sub-second runtimes for DiffIR.
We propose a simple iterative scheme that functionally composes intermediate non-stationary velocity fields.
We then propose a convex optimisation model that uses a regularisation term of arbitrary order to impose smoothness on these velocity fields.
arXiv Detail & Related papers (2021-09-26T19:56:45Z) - Deformable Image Registration using Neural ODEs [15.245085400790002]
We present a generic, fast, and accurate diffeomorphic image registration framework that leverages neural ordinary differential equations (NODEs)
Compared with traditional optimization-based methods, our framework reduces the running time from tens of minutes to tens of seconds.
Our experiments show that the registration results of our method outperform state-of-the-arts under various metrics.
arXiv Detail & Related papers (2021-08-07T12:54:17Z) - Multi-scale Neural ODEs for 3D Medical Image Registration [7.715565365558909]
Image registration plays an important role in medical image analysis.
Deep learning methods such as learn-to-map are much faster but either iterative or coarse-to-fine approach is required to improve accuracy for handling large motions.
In this work, we proposed to learn a registration via a multi-scale neural ODE model.
arXiv Detail & Related papers (2021-06-16T00:26:53Z) - Learning a Model-Driven Variational Network for Deformable Image
Registration [89.9830129923847]
VR-Net is a novel cascaded variational network for unsupervised deformable image registration.
It outperforms state-of-the-art deep learning methods on registration accuracy.
It maintains the fast inference speed of deep learning and the data-efficiency of variational model.
arXiv Detail & Related papers (2021-05-25T21:37:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.