Learning a Model-Driven Variational Network for Deformable Image
Registration
- URL: http://arxiv.org/abs/2105.12227v1
- Date: Tue, 25 May 2021 21:37:37 GMT
- Title: Learning a Model-Driven Variational Network for Deformable Image
Registration
- Authors: Xi Jia, Alexander Thorley, Wei Chen, Huaqi Qiu, Linlin Shen, Iain B
Styles, Hyung Jin Chang, Ales Leonardis, Antonio de Marvao, Declan P.
O'Regan, Daniel Rueckert, Jinming Duan
- Abstract summary: VR-Net is a novel cascaded variational network for unsupervised deformable image registration.
It outperforms state-of-the-art deep learning methods on registration accuracy.
It maintains the fast inference speed of deep learning and the data-efficiency of variational model.
- Score: 89.9830129923847
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data-driven deep learning approaches to image registration can be less
accurate than conventional iterative approaches, especially when training data
is limited. To address this whilst retaining the fast inference speed of deep
learning, we propose VR-Net, a novel cascaded variational network for
unsupervised deformable image registration. Using the variable splitting
optimization scheme, we first convert the image registration problem,
established in a generic variational framework, into two sub-problems, one with
a point-wise, closed-form solution while the other one is a denoising problem.
We then propose two neural layers (i.e. warping layer and intensity consistency
layer) to model the analytical solution and a residual U-Net to formulate the
denoising problem (i.e. generalized denoising layer). Finally, we cascade the
warping layer, intensity consistency layer, and generalized denoising layer to
form the VR-Net. Extensive experiments on three (two 2D and one 3D) cardiac
magnetic resonance imaging datasets show that VR-Net outperforms
state-of-the-art deep learning methods on registration accuracy, while
maintains the fast inference speed of deep learning and the data-efficiency of
variational model.
Related papers
- Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
Sufficient denoising is often an important first step for image processing.
Deep neural networks (DNNs) have been widely used for image denoising.
We introduce a new self-supervised framework for image denoising based on the Tucker low-rank tensor approximation.
arXiv Detail & Related papers (2022-09-26T14:11:05Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
Deep convolutional neural networks (CNNs) are used for image denoising via automatically mining accurate structure information.
We propose a multi-stage image denoising CNN with the wavelet transform (MWDCNN) via three stages, i.e., a dynamic convolutional block (DCB), two cascaded wavelet transform and enhancement blocks (WEBs) and residual block (RB)
arXiv Detail & Related papers (2022-09-26T03:28:23Z) - WNet: A data-driven dual-domain denoising model for sparse-view computed
tomography with a trainable reconstruction layer [3.832032989515628]
We propose WNet, a data-driven dual-domain denoising model which contains a trainable reconstruction layer for sparse-view artifact denoising.
We train and test our network on two clinically relevant datasets and we compare the obtained results with three different types of sparse-view CT denoising and reconstruction algorithms.
arXiv Detail & Related papers (2022-07-01T13:17:01Z) - Deformable Image Registration using Neural ODEs [15.245085400790002]
We present a generic, fast, and accurate diffeomorphic image registration framework that leverages neural ordinary differential equations (NODEs)
Compared with traditional optimization-based methods, our framework reduces the running time from tens of minutes to tens of seconds.
Our experiments show that the registration results of our method outperform state-of-the-arts under various metrics.
arXiv Detail & Related papers (2021-08-07T12:54:17Z) - Multi-scale Neural ODEs for 3D Medical Image Registration [7.715565365558909]
Image registration plays an important role in medical image analysis.
Deep learning methods such as learn-to-map are much faster but either iterative or coarse-to-fine approach is required to improve accuracy for handling large motions.
In this work, we proposed to learn a registration via a multi-scale neural ODE model.
arXiv Detail & Related papers (2021-06-16T00:26:53Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z) - Identity Enhanced Residual Image Denoising [61.75610647978973]
We learn a fully-convolutional network model that consists of a Chain of Identity Mapping Modules and residual on the residual architecture for image denoising.
The proposed network produces remarkably higher numerical accuracy and better visual image quality than the classical state-of-the-art and CNN algorithms.
arXiv Detail & Related papers (2020-04-26T04:52:22Z) - Single-Image HDR Reconstruction by Learning to Reverse the Camera
Pipeline [100.5353614588565]
We propose to incorporate the domain knowledge of the LDR image formation pipeline into our model.
We model the HDRto-LDR image formation pipeline as the (1) dynamic range clipping, (2) non-linear mapping from a camera response function, and (3) quantization.
We demonstrate that the proposed method performs favorably against state-of-the-art single-image HDR reconstruction algorithms.
arXiv Detail & Related papers (2020-04-02T17:59:04Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.