Effect of quantum jumps on non-Hermitian system
- URL: http://arxiv.org/abs/2202.12591v2
- Date: Tue, 18 Apr 2023 06:50:22 GMT
- Title: Effect of quantum jumps on non-Hermitian system
- Authors: Xiangyu Niu, Jianning Li, S. L. Wu, X. X. Yi
- Abstract summary: We first derive an effective Hamiltonian to describe the dynamics of the open quantum system based on the master equation.
We then expand the eigenstates and eigenenergies up to the first and second order in the quantum jumps.
The effect of quantum jump on the dynamics and the nonequilibrium phase transition is demonstrated and discussed.
- Score: 0.11764175310344632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One among the possible realizations of non-Hermitian systems is based on open
quantum systems by omitting quantum jumping terms in the master equation. This
is a good approximation at short times where the effects of quantum jumps can
be ignored. However, the jumps can affect the long time dynamics of the system,
motivating us to take the jumps into account in these studies. In this paper,
by treating the quantum jumps as perturbations, we examine the effect of the
quantum jumps on the non-Hermitian system. For this purpose, we first derive an
effective Hamiltonian to describe the dynamics of the open quantum system based
on the master equation, then expand the eigenstates and eigenenergies up to the
first and second order in the quantum jumps. Finally, we apply our theory to a
dissipative two-level system and dissipative fermionic superfluids. The effect
of quantum jump on the dynamics and the nonequilibrium phase transition is
demonstrated and discussed.
Related papers
- Magnetization in a non-equilibrium quantum spin system [0.0]
We show that the effective non-Hermitian Hamiltonian can accurately represent the long-term dynamics of a critical two-level open quantum system.
The NESS is identical to the coalescent state of the effective non-Hermitian Hamiltonian.
This discovery paves the way for a better understanding of the long-term dynamics of critical open quantum systems.
arXiv Detail & Related papers (2024-06-01T02:16:24Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Topological extension including quantum jump [4.681851642601744]
We study the Su-Schrieffer-Heeger model with collective loss and gain from a topological perspective.
Our study provides a qualitative analysis of the impact of quantum jumping terms and reveals their unique role in quantum systems.
arXiv Detail & Related papers (2022-11-08T13:26:57Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - The Quantum-House Effect: Filling the Gap Between Classicality and
Quantum Discord [0.0]
The quantum-house effect fills the gap between trivial correlations and quantum discord.
The effect is demonstrated on SpinQ Gemini, a 2-qubit liquid-state NMR desktop quantum computer.
arXiv Detail & Related papers (2022-05-24T08:55:31Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Revealing higher-order light and matter energy exchanges using quantum
trajectories in ultrastrong coupling [0.0]
We extend the formalism of quantum trajectories to open quantum systems with ultrastrong coupling.
We analyze the impact of the chosen unravelling (i.e., how one collects the output field of the system) for the quantum trajectories.
arXiv Detail & Related papers (2021-07-19T11:22:12Z) - Quantum jumps in the non-Hermitian dynamics of a superconducting qubit [0.35436187733613084]
We study the dynamics of a driven non-Hermitian superconducting qubit perturbed by quantum jumps between energy levels.
Our study shows the critical role of quantum jumps in generalizing the applications of classical non-Hermitian systems to open quantum systems for sensing and control.
arXiv Detail & Related papers (2021-03-10T19:00:00Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.