論文の概要: NeuralFusion: Neural Volumetric Rendering under Human-object
Interactions
- arxiv url: http://arxiv.org/abs/2202.12825v1
- Date: Fri, 25 Feb 2022 17:10:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-28 15:24:08.941209
- Title: NeuralFusion: Neural Volumetric Rendering under Human-object
Interactions
- Title(参考訳): ニューラルフュージョン:人間と物体の相互作用によるニューラルボリュームレンダリング
- Authors: Yuheng Jiang, Suyi Jiang, Guoxing Sun, Zhuo Su, Kaiwen Guo, Minye Wu,
Jingyi Yu, Lan Xu
- Abstract要約: 本稿では,リアルタイムな人間のパフォーマンスキャプチャ・レンダリングシステムであるNeuralHumanFVを提案する。
実時間暗黙的幾何推論のための階層的サンプリング戦略を用いたニューラルジオメトリ生成手法を提案する。
また,高分解能(例えば1k)とフォトリアリスティックテクスチャを生成するニューラルブレンディング手法を提案する。
- 参考スコア(独自算出の注目度): 46.70371238621842
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 4D reconstruction and rendering of human activities is critical for immersive
VR/AR experience. Recent advances still fail to recover fine geometry and
texture results with the level of detail present in the input images from
sparse multi-view RGB cameras. In this paper, we propose NeuralHumanFVV, a
real-time neural human performance capture and rendering system to generate
both high-quality geometry and photo-realistic texture of human activities in
arbitrary novel views. We propose a neural geometry generation scheme with a
hierarchical sampling strategy for real-time implicit geometry inference, as
well as a novel neural blending scheme to generate high resolution (e.g., 1k)
and photo-realistic texture results in the novel views. Furthermore, we adopt
neural normal blending to enhance geometry details and formulate our neural
geometry and texture rendering into a multi-task learning framework. Extensive
experiments demonstrate the effectiveness of our approach to achieve
high-quality geometry and photo-realistic free view-point reconstruction for
challenging human performances.
- Abstract(参考訳): 没入型VR/AR体験には, 人間の活動の4次元再構築とレンダリングが不可欠である。
近年の進歩は、細かなマルチビューRGBカメラから入力画像の細部まで詳細な形状やテクスチャの再現には至っていない。
本稿では,人間の活動の高品質な形状とフォトリアリスティックなテクスチャを任意の視点で生成する,リアルタイムのニューラルネットワークによるパフォーマンスキャプチャとレンダリングシステムであるneuralhumanfvvを提案する。
本研究では,リアルタイム暗黙的幾何推論のための階層的サンプリング戦略と,高分解能(1kなど)とフォトリアリスティックなテクスチャを新たに生成するニューラルブレンディング方式を提案する。
さらに、我々はニューラルノーマルブレンディングを採用し、幾何学の詳細を高め、ニューラルジオメトリーとテクスチャレンダリングをマルチタスク学習フレームワークに定式化する。
広範な実験により,高品質な幾何学とフォトリアリスティックな自由視点再構成を実現するためのアプローチの有効性が実証された。
関連論文リスト
- DreamHOI: Subject-Driven Generation of 3D Human-Object Interactions with Diffusion Priors [4.697267141773321]
人-物体相互作用(HOI)のゼロショット合成法であるDreamHOIを提案する。
我々は、何十億もの画像キャプチャーペアで訓練されたテキストと画像の拡散モデルを利用して、リアルなHOIを生成する。
提案手法は広範囲な実験を通じて検証し,現実的なHOIを生成する上での有効性を実証する。
論文 参考訳(メタデータ) (2024-09-12T17:59:49Z) - Scaling Up Dynamic Human-Scene Interaction Modeling [58.032368564071895]
TRUMANSは、現在利用可能な最も包括的なモーションキャプチャーHSIデータセットである。
人体全体の動きや部分レベルの物体の動きを複雑に捉えます。
本研究では,任意の長さのHSI配列を効率的に生成する拡散型自己回帰モデルを提案する。
論文 参考訳(メタデータ) (2024-03-13T15:45:04Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAMは、ハイブリッド表現を備えた新しいRGB-DセマンティックSLAMアプローチである。
本手法は画像に基づく特徴抽出と多視点幾何制約を統合し,外観の細部を改良する。
実験により, 合成データと実世界のデータ追跡の両面において, 最先端の性能が得られた。
論文 参考訳(メタデータ) (2023-11-30T21:34:44Z) - Instant-NVR: Instant Neural Volumetric Rendering for Human-object
Interactions from Monocular RGBD Stream [14.844982083586306]
Instant-NVRは,1台のRGBDカメラを用いて,物体追跡とレンダリングを瞬時に行うニューラルネットワークである。
トラッキングフロントエンドでは、十分な動作先を提供するために、頑健な人間オブジェクトキャプチャー方式を採用する。
また,移動優先探索による動的・静電放射場をオンザフライで再構築する手法も提案する。
論文 参考訳(メタデータ) (2023-04-06T16:09:51Z) - GM-NeRF: Learning Generalizable Model-based Neural Radiance Fields from
Multi-view Images [79.39247661907397]
本稿では,自由視点画像の合成に有効なフレームワークであるGeneralizable Model-based Neural Radiance Fieldsを提案する。
具体的には、多視点2D画像からの出現コードを幾何学的プロキシに登録するための幾何学誘導型アテンション機構を提案する。
論文 参考訳(メタデータ) (2023-03-24T03:32:02Z) - Learn to Predict How Humans Manipulate Large-sized Objects from
Interactive Motions [82.90906153293585]
本稿では,動きデータと動的記述子を融合させるグラフニューラルネットワークHO-GCNを提案する。
動的記述子を消費するネットワークは、最先端の予測結果が得られ、未確認オブジェクトへのネットワークの一般化に役立つことを示す。
論文 参考訳(メタデータ) (2022-06-25T09:55:39Z) - Geometry-Guided Progressive NeRF for Generalizable and Efficient Neural
Human Rendering [139.159534903657]
我々は、高忠実度自由視点人体詳細のための一般化可能で効率的なニューラルレーダランス・フィールド(NeRF)パイプラインを開発した。
自己閉塞性を改善するため,幾何誘導型多視点機能統合手法を考案した。
高いレンダリング効率を達成するため,幾何誘導型プログレッシブレンダリングパイプラインを導入する。
論文 参考訳(メタデータ) (2021-12-08T14:42:10Z) - Neural Free-Viewpoint Performance Rendering under Complex Human-object
Interactions [35.41116017268475]
没入型VR/AR体験と人間の活動理解には,人間と物体の相互作用の4次元再構築が不可欠である。
近年の進歩は、細かなRGB入力から細かな幾何学やテクスチャ結果の回復には至っていない。
本研究では,人間と物体の高画質なテクスチャとフォトリアリスティックなテクスチャを両立させるニューラル・ヒューマン・パフォーマンス・キャプチャー・レンダリングシステムを提案する。
論文 参考訳(メタデータ) (2021-08-01T04:53:54Z) - RobustFusion: Robust Volumetric Performance Reconstruction under
Human-object Interactions from Monocular RGBD Stream [27.600873320989276]
現実のシナリオでは、さまざまなオブジェクトと複雑な相互作用を持つ人間のパフォーマンスの高品質の4D再構築が不可欠です。
近年の進歩は、信頼性の高い性能回復には至っていない。
人間と物体のインタラクションシナリオのための堅牢なボリュームパフォーマンス再構築システムであるRobustFusionを提案する。
論文 参考訳(メタデータ) (2021-04-30T08:41:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。