論文の概要: Near Optimal Reconstruction of Spherical Harmonic Expansions
- arxiv url: http://arxiv.org/abs/2202.12995v1
- Date: Fri, 25 Feb 2022 21:54:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-01 18:20:20.504078
- Title: Near Optimal Reconstruction of Spherical Harmonic Expansions
- Title(参考訳): 球面高調波展開の近似最適再構成
- Authors: Amir Zandieh, Insu Han, Haim Avron
- Abstract要約: L2(mathbbSd-1)$の任意の$fに対して、次数-$q$球高調波展開に必要な$f$の評価数は、対数係数まで最大$q$の球高調波空間の次元と等しいことを示す。
我々は、$mathbbSd-1$上の一様サンプリング点上の関数のみを評価することで、$f$の$q$展開を回復するための単純で効率的なアルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 11.370390549286757
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an algorithm for robust recovery of the spherical harmonic
expansion of functions defined on the d-dimensional unit sphere
$\mathbb{S}^{d-1}$ using a near-optimal number of function evaluations. We show
that for any $f \in L^2(\mathbb{S}^{d-1})$, the number of evaluations of $f$
needed to recover its degree-$q$ spherical harmonic expansion equals the
dimension of the space of spherical harmonics of degree at most $q$ up to a
logarithmic factor. Moreover, we develop a simple yet efficient algorithm to
recover degree-$q$ expansion of $f$ by only evaluating the function on
uniformly sampled points on $\mathbb{S}^{d-1}$. Our algorithm is based on the
connections between spherical harmonics and Gegenbauer polynomials and leverage
score sampling methods. Unlike the prior results on fast spherical harmonic
transform, our proposed algorithm works efficiently using a nearly optimal
number of samples in any dimension d. We further illustrate the empirical
performance of our algorithm on numerical examples.
- Abstract(参考訳): 本稿では,D次元単位球面$\mathbb{S}^{d-1}$上で定義される関数の球面調和展開を,関数評価の近似数を用いて頑健に回復するアルゴリズムを提案する。
任意の$f \in L^2(\mathbb{S}^{d-1})$に対して、その次数-$q$球高調波展開に必要な$f$の評価数は、対数係数の少なくとも$q$の球高調波空間の次元と等しいことを示す。
さらに,一様サンプリング点上の関数を$\mathbb{s}^{d-1}$ で評価することによって,f$ の次数-$q$ 拡大を回収する単純かつ効率的なアルゴリズムを開発した。
本アルゴリズムは, 球面調和とゲゲンバウアー多項式の接続に基づいて, スコアサンプリング手法を利用する。
高速球面調和変換の以前の結果とは異なり、提案アルゴリズムは任意の次元のサンプルのほぼ最適な数を用いて効率的に動作する。
さらに,数値例によるアルゴリズムの実証的性能について述べる。
関連論文リスト
- Sample Complexity for Quadratic Bandits: Hessian Dependent Bounds and
Optimal Algorithms [64.10576998630981]
最適なヘッセン依存型サンプルの複雑さを, 初めて厳密に評価した。
ヘシアン非依存のアルゴリズムは、すべてのヘシアンインスタンスに対して最適なサンプル複雑さを普遍的に達成する。
本アルゴリズムにより得られたサンプルの最適複雑さは,重み付き雑音分布においても有効である。
論文 参考訳(メタデータ) (2023-06-21T17:03:22Z) - Gradient-free optimization of highly smooth functions: improved analysis
and a new algorithm [87.22224691317766]
この研究は、目的関数が極めて滑らかであるという仮定の下で、ゼロ次ノイズオラクル情報による問題を研究する。
ゼロオーダー射影勾配勾配アルゴリズムを2種類検討する。
論文 参考訳(メタデータ) (2023-06-03T17:05:13Z) - Gauss-Newton Temporal Difference Learning with Nonlinear Function Approximation [11.925232472331494]
非線形関数近似を用いたQラーニング問題を解くため,ガウスニュートン時間差分法(GNTD)学習法を提案する。
各イテレーションにおいて、我々の手法は1つのガウスニュートン(GN)ステップを踏んで平均二乗ベルマン誤差(MSBE)の変種を最適化する。
いくつかのRLベンチマークにおいて、GNTDはTD型よりも高い報酬と高速な収束を示す。
論文 参考訳(メタデータ) (2023-02-25T14:14:01Z) - Faster First-Order Algorithms for Monotone Strongly DR-Submodular
Maximization [11.919431962501479]
連続部分モジュラ函数はDimishing Returns (DR) の性質を満たすが、これは非負の方向に沿って凹凸であることを意味する。
そこで本稿では,lceilfracLmurce$のあとで,証明可能な1-fracce$近似比と一致する新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-11-15T18:53:14Z) - Multiscale regression on unknown manifolds [13.752772802705978]
マルチスケールで$mathcalM$に低次元座標を構築し、ローカルフィッティングによるマルチスケール回帰を行います。
本手法の一般化誤差を,事前のリッチクラス上で高い確率で有限サンプル境界を証明することによって解析する。
私たちのアルゴリズムは、サンプルサイズの準線形複雑性を持ち、定数は$D$で、指数は$d$です。
論文 参考訳(メタデータ) (2021-01-13T15:14:31Z) - Finding Global Minima via Kernel Approximations [90.42048080064849]
関数評価のみに基づく滑らかな関数のグローバル最小化を考える。
本稿では,近似関数を共同でモデル化し,大域的最小値を求める手法を検討する。
論文 参考訳(メタデータ) (2020-12-22T12:59:30Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
本アルゴリズムは,実験者のガウス過程から引き出された一組の引き数で区切られた関数空間の有限次元ランダム部分空間列を生成する。
標準ベイズ最適化は各部分空間に適用され、次の部分空間の出発点(オリジン)として用いられる最良の解である。
シミュレーションおよび実世界の実験,すなわちブラインド関数マッチング,アルミニウム合金の最適析出強化関数の探索,深層ネットワークの学習速度スケジュール最適化において,本アルゴリズムを検証した。
論文 参考訳(メタデータ) (2020-09-08T06:54:11Z) - Reinforcement Learning with General Value Function Approximation:
Provably Efficient Approach via Bounded Eluder Dimension [124.7752517531109]
一般値関数近似を用いた効率の良い強化学習アルゴリズムを確立する。
我々のアルゴリズムは、$d$が複雑性測度である場合、$widetildeO(mathrmpoly(dH)sqrtT)$の後悔の限界を達成することを示す。
我々の理論は線形値関数近似によるRLの最近の進歩を一般化し、環境モデルに対する明示的な仮定をしない。
論文 参考訳(メタデータ) (2020-05-21T17:36:09Z) - Efficient algorithms for multivariate shape-constrained convex
regression problems [9.281671380673306]
最小二乗推定器は、制約付き凸プログラミング(QP)問題を$(n+1)d$変数と少なくとも$n(n-1)$線形不等式制約で解くことで計算可能であることを証明している。
一般に非常に大規模な凸QPを解くために、我々は2つの効率的なアルゴリズムを設計する。1つは対称ガウス・シーデルに基づく乗算器の交互方向法(tt sGS-ADMM)であり、もう1つは半滑らかニュートン法(tt)によって解かれる部分プロブレムを持つ近似拡張ラグランジアン法(tt pALM)である。
論文 参考訳(メタデータ) (2020-02-26T11:18:43Z) - Complexity of Finding Stationary Points of Nonsmooth Nonconvex Functions [84.49087114959872]
非滑らかで非滑らかな関数の定常点を見つけるための最初の非漸近解析を提供する。
特に、アダマール半微分可能函数(おそらく非滑らか関数の最大のクラス)について研究する。
論文 参考訳(メタデータ) (2020-02-10T23:23:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。