論文の概要: A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval
- arxiv url: http://arxiv.org/abs/2409.04733v1
- Date: Sat, 7 Sep 2024 06:37:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 21:01:36.879377
- Title: A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval
- Title(参考訳): ロバスト位相検索のための高効率交代最小化アルゴリズム
- Authors: Adarsh Barik, Anand Krishna, Vincent Y. F. Tan,
- Abstract要約: そこで本研究では,未知の信号の復元を課題とする,ロバストな位相探索問題を提案する。
提案するオラクルは、単純な勾配ステップと外れ値を用いて、計算学的スペクトル降下を回避している。
- 参考スコア(独自算出の注目度): 56.67706781191521
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we study the robust phase retrieval problem where the task is to recover an unknown signal $\theta^* \in \mathbb{R}^d$ in the presence of potentially arbitrarily corrupted magnitude-only linear measurements. We propose an alternating minimization approach that incorporates an oracle solver for a non-convex optimization problem as a subroutine. Our algorithm guarantees convergence to $\theta^*$ and provides an explicit polynomial dependence of the convergence rate on the fraction of corrupted measurements. We then provide an efficient construction of the aforementioned oracle under a sparse arbitrary outliers model and offer valuable insights into the geometric properties of the loss landscape in phase retrieval with corrupted measurements. Our proposed oracle avoids the need for computationally intensive spectral initialization, using a simple gradient descent algorithm with a constant step size and random initialization instead. Additionally, our overall algorithm achieves nearly linear sample complexity, $\mathcal{O}(d \, \mathrm{polylog}(d))$.
- Abstract(参考訳): 本研究では,未知の信号 $\theta^* \in \mathbb{R}^d$ を任意の大きさのみの線形測定の有無で回収する,ロバスト位相探索問題について検討する。
本稿では,非凸最適化問題に対するオラクルソルバをサブルーチンとして組み込んだ最小化手法を提案する。
我々のアルゴリズムは、$\theta^*$への収束を保証し、劣化した測定の分数に対する収束率の明示的な多項式依存を与える。
次に, 粗い任意の外れ値モデルの下で, 上記のオラクルを効率的に構築し, 位相探索における損失景観の幾何学的特性について, 劣化測定による貴重な知見を提供する。
提案するオラクルは、一定のステップサイズとランダムな初期化を持つ単純な勾配降下アルゴリズムを用いて、計算集約的なスペクトル初期化の必要性を回避する。
さらに、我々の全体的なアルゴリズムは、ほぼ線形なサンプルの複雑さ、$\mathcal{O}(d \, \mathrm{polylog}(d))$を達成する。
関連論文リスト
- Alternating Minimization Schemes for Computing Rate-Distortion-Perception Functions with $f$-Divergence Perception Constraints [10.564071872770146]
離散メモリレスソースに対するRDPF(Ralse-Distortion-Perception Function)の計算について検討した。
最適パラメトリック解を特徴付ける。
歪みと知覚制約について十分な条件を提供する。
論文 参考訳(メタデータ) (2024-08-27T12:50:12Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
信頼領域(TR)と立方体を用いた適応正則化は、非常に魅力的な理論的性質を持つことが証明されている。
TR法とARC法はヘッセン関数,勾配関数,関数値の非コンパクトな計算を同時に行うことができることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:29:58Z) - Orthogonal Directions Constrained Gradient Method: from non-linear
equality constraints to Stiefel manifold [16.099883128428054]
直交方向制約法(ODCGM)という新しいアルゴリズムを提案する。
ODCGMはベクトル空間へのプロジェクションのみを必要とする。
以上より, ODCGMは, ほぼ最適のオラクル複合体を呈することを示した。
論文 参考訳(メタデータ) (2023-03-16T12:25:53Z) - Statistical-Computational Tradeoffs in Mixed Sparse Linear Regression [20.00109111254507]
この問題は、$frackSNR2$-to-$frack2SNR2$statistic-to-computational gapである。
また,この問題が困難な狭い状況以外では,関連する混合回帰検出問題を解くための簡単なしきい値決定アルゴリズムも分析する。
論文 参考訳(メタデータ) (2023-03-03T18:03:49Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
不均一な問題に対する近似メッセージパッシングアルゴリズム(AMP)を導出する。
特に,情報理論の閾値よりも大きい信号と雑音の比を必要とする既知のアルゴリズムが,ランダムよりも優れた処理を行うための統計的・計算的ギャップの存在を同定する。
論文 参考訳(メタデータ) (2023-02-13T19:57:17Z) - Towards Sample-Optimal Compressive Phase Retrieval with Sparse and
Generative Priors [59.33977545294148]
O(k log L)$サンプルは振幅に基づく経験損失関数を最小化する任意のベクトルに信号が近いことを保証するのに十分であることを示す。
この結果はスパース位相検索に適応し、基底信号が$s$-sparseおよび$n$-dimensionalである場合、$O(s log n)$サンプルは同様の保証に十分であることを示す。
論文 参考訳(メタデータ) (2021-06-29T12:49:54Z) - Provably Convergent Working Set Algorithm for Non-Convex Regularized
Regression [0.0]
本稿では、収束保証付き非正則正規化器のためのワーキングセットアルゴリズムを提案する。
その結果,ブロックコーディネートや勾配ソルバの完全解法と比較して高い利得を示した。
論文 参考訳(メタデータ) (2020-06-24T07:40:31Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
強凸関数のゼロ次最適化問題について検討する。
予測勾配降下アルゴリズムのランダム化近似を考察する。
その結果,0次アルゴリズムはサンプルの複雑性や問題パラメータの点でほぼ最適であることが示唆された。
論文 参考訳(メタデータ) (2020-06-14T10:42:23Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。