論文の概要: A Generative Model for Relation Extraction and Classification
- arxiv url: http://arxiv.org/abs/2202.13229v1
- Date: Sat, 26 Feb 2022 21:17:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-03 07:39:43.480417
- Title: A Generative Model for Relation Extraction and Classification
- Title(参考訳): 関係抽出と分類のための生成モデル
- Authors: Jian Ni, Gaetano Rossiello, Alfio Gliozzo, Radu Florian
- Abstract要約: 関係抽出・分類のための新しい生成モデル(GREC)を提案する。
本稿では、ソースおよびターゲットシーケンスの様々なエンコーディング表現について検討し、3つのベンチマークREデータセット上でGRECが最先端のパフォーマンスを達成できる効果的なスキームを設計する。
我々のアプローチは1つのパスで文からすべての関係三重項を抽出するために拡張することができる。
- 参考スコア(独自算出の注目度): 23.1277041729626
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Relation extraction (RE) is an important information extraction task which
provides essential information to many NLP applications such as knowledge base
population and question answering. In this paper, we present a novel generative
model for relation extraction and classification (which we call GREC), where RE
is modeled as a sequence-to-sequence generation task. We explore various
encoding representations for the source and target sequences, and design
effective schemes that enable GREC to achieve state-of-the-art performance on
three benchmark RE datasets. In addition, we introduce negative sampling and
decoding scaling techniques which provide a flexible tool to tune the precision
and recall performance of the model. Our approach can be extended to extract
all relation triples from a sentence in one pass. Although the one-pass
approach incurs certain performance loss, it is much more computationally
efficient.
- Abstract(参考訳): 関係抽出(RE)は,知識ベース人口や質問応答など,多くのNLPアプリケーションに不可欠な情報を提供する重要な情報抽出タスクである。
本稿では,関係抽出と分類のための新しい生成モデル(GREC)を提案し,REをシーケンス・ツー・シーケンス生成タスクとしてモデル化する。
本稿では、ソースおよびターゲットシーケンスの様々なエンコーディング表現について検討し、3つのベンチマークREデータセット上でGRECが最先端のパフォーマンスを達成できる効果的なスキームを設計する。
さらに,モデルの精度とリコール性能をチューニングするためのフレキシブルなツールとして,負のサンプリング・デコード・スケーリング手法を導入する。
我々の手法は、文から三重項を1パスで抽出するために拡張することができる。
ワンパス方式は特定の性能損失を引き起こすが、より計算効率が良い。
関連論文リスト
- Idempotent Unsupervised Representation Learning for Skeleton-Based Action Recognition [13.593511876719367]
教師なし表現学習のための新しい骨格ベース等等化生成モデル(IGM)を提案する。
ベンチマークデータセットであるNTU RGB+DとPKUMMDに関する実験により,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-10-27T06:29:04Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - Deep Graph Reprogramming [112.34663053130073]
グラフニューラルネットワーク(GNN)に適したタスク再利用モデル「ディープグラフ再プログラミング」
本稿では,モデル再プログラミングパラダイムと並行して,革新的なデータ再プログラミングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-28T02:04:29Z) - Continual Contrastive Finetuning Improves Low-Resource Relation
Extraction [34.76128090845668]
関係抽出は低リソースのシナリオやドメインでは特に困難である。
近年の文献は自己教師型学習によって低リソースREに取り組みつつある。
コントラスト学習の一貫した目的を用いたREモデルの事前学習と微調整を提案する。
論文 参考訳(メタデータ) (2022-12-21T07:30:22Z) - DORE: Document Ordered Relation Extraction based on Generative Framework [56.537386636819626]
本稿では,既存のDocREモデルの根本原因について検討する。
本稿では,モデルが学習しやすく,決定論的な関係行列から記号列と順序列を生成することを提案する。
4つのデータセットに対する実験結果から,提案手法は生成型DocREモデルの性能を向上させることができることが示された。
論文 参考訳(メタデータ) (2022-10-28T11:18:10Z) - Towards Realistic Low-resource Relation Extraction: A Benchmark with
Empirical Baseline Study [51.33182775762785]
本稿では,低リソース環境下での関係抽出システムを構築するための実証的研究について述べる。
低リソース環境での性能を評価するための3つのスキームについて検討する。 (i) ラベル付きラベル付きデータを用いた異なるタイプのプロンプトベース手法、 (ii) 長期分布問題に対処する多様なバランシング手法、 (iii) ラベル付きインドメインデータを生成するためのデータ拡張技術と自己学習。
論文 参考訳(メタデータ) (2022-10-19T15:46:37Z) - Modeling Multi-Granularity Hierarchical Features for Relation Extraction [26.852869800344813]
本稿では,原文のみに基づく多粒度特徴抽出手法を提案する。
外部知識を必要とせずに,効果的な構造的特徴が達成可能であることを示す。
論文 参考訳(メタデータ) (2022-04-09T09:44:05Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - Generative Adversarial Networks for Annotated Data Augmentation in Data
Sparse NLU [0.76146285961466]
データスパーシティは、自然言語理解におけるモデル開発に関連する重要な課題の1つです。
GAN (Sequence Generative Adversarial Network) を用いたトレーニングデータ拡張によるNLUモデルの性能向上について報告する。
本実験により, 逐次生成逆数ネットワークを用いて生成した合成データにより, 複数の指標間で大きな性能向上が得られた。
論文 参考訳(メタデータ) (2020-12-09T20:38:17Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
本稿では,シーケンスレコメンデーションのための自己改善学習のためのモデルS3-Recを提案する。
そこで本稿では,属性,項目,サブシーケンス,シーケンス間の相関関係を学習するために,4つの補助的自己教師対象を考案する。
6つの実世界のデータセットで実施された大規模な実験は、既存の最先端手法よりも提案手法が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-18T11:44:10Z) - Hierarchical and Efficient Learning for Person Re-Identification [19.172946887940874]
階層的大域的, 部分的, 回復的特徴を複数の損失結合の監督の下で学習する, 階層的, 効率的なネットワーク(HENet)を提案する。
また,RPE (Random Polygon Erasing) と呼ばれる新しいデータセット拡張手法を提案する。
論文 参考訳(メタデータ) (2020-05-18T15:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。