論文の概要: The Art of Manipulation: Threat of Multi-Step Manipulative Attacks in
Security Games
- arxiv url: http://arxiv.org/abs/2202.13424v1
- Date: Sun, 27 Feb 2022 18:58:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-01 17:16:18.330607
- Title: The Art of Manipulation: Threat of Multi-Step Manipulative Attacks in
Security Games
- Title(参考訳): マニピュレーションの技:セキュリティゲームにおけるマルチステップ・マニピュレーション・アタックの脅威
- Authors: Thanh H. Nguyen and Arunesh Sinh
- Abstract要約: 本稿では,Stackelbergセキュリティゲームにおけるマルチステップマニピュレータ攻撃の問題点について検討する。
巧妙な攻撃者は、攻撃者の行動に関するディフェンダーの学習を誤解させるために、複数の時間ステップで攻撃を組織しようと試みる。
この攻撃操作は最終的に、攻撃者の利益に対する守備者のパトロール戦略に影響を与える。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper studies the problem of multi-step manipulative attacks in
Stackelberg security games, in which a clever attacker attempts to orchestrate
its attacks over multiple time steps to mislead the defender's learning of the
attacker's behavior. This attack manipulation eventually influences the
defender's patrol strategy towards the attacker's benefit. Previous work along
this line of research only focuses on one-shot games in which the defender
learns the attacker's behavior and then designs a corresponding strategy only
once. Our work, on the other hand, investigates the long-term impact of the
attacker's manipulation in which current attack and defense choices of players
determine the future learning and patrol planning of the defender. This paper
has three key contributions. First, we introduce a new multi-step manipulative
attack game model that captures the impact of sequential manipulative attacks
carried out by the attacker over the entire time horizon. Second, we propose a
new algorithm to compute an optimal manipulative attack plan for the attacker,
which tackles the challenge of multiple connected optimization components
involved in the computation across multiple time steps. Finally, we present
extensive experimental results on the impact of such misleading attacks,
showing a significant benefit for the attacker and loss for the defender.
- Abstract(参考訳): 本稿では,攻撃者の行動の学習を誤解させるために,複数の時間ステップにわたる攻撃を巧妙な攻撃者が編成しようとする,stackelberg security gamesにおけるマルチステップマニピュレーション攻撃の問題点について検討する。
この攻撃操作は最終的に攻撃者の利益に対する守備者のパトロール戦略に影響を与える。
これまでの研究は、攻撃者の行動を学習し、対応する戦略を一度だけ設計するワンショットゲームのみに焦点を当てていた。
一方,我々の研究は,攻撃者の操作の長期的影響を調査し,プレイヤーの現在の攻撃選択と防御選択が,守備者の将来の学習とパトロール計画を決定する。
この論文には3つの重要な貢献がある。
まず,攻撃者が時間軸全体にわたって行った連続的な操作的攻撃の影響を捉えるマルチステップ操作型攻撃ゲームモデルを提案する。
第2に,攻撃者に対する最適な操作的攻撃計画を計算するアルゴリズムを提案し,複数の時間ステップにわたる計算に係わる複数の最適化コンポーネントの課題に対処する。
最後に,このような誤解を招く攻撃の影響について,広範な実験結果を示し,攻撃者にとって大きな利益と防御者にとっての損失を示す。
関連論文リスト
- On the Difficulty of Defending Contrastive Learning against Backdoor
Attacks [58.824074124014224]
バックドア攻撃が、特有のメカニズムによってどのように動作するかを示す。
本研究は, 対照的なバックドア攻撃の特異性に合わせて, 防御の必要性を浮き彫りにした。
論文 参考訳(メタデータ) (2023-12-14T15:54:52Z) - Adversarial Machine Learning and Defense Game for NextG Signal
Classification with Deep Learning [1.1726528038065764]
NextGシステムは、ユーザ機器の識別、物理層認証、既存ユーザの検出など、さまざまなタスクにディープニューラルネットワーク(DNN)を使用することができる。
本稿では,深層学習に基づくNextG信号分類のための攻撃と防御の相互作用を研究するゲーム理論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-22T15:13:03Z) - Thinking Two Moves Ahead: Anticipating Other Users Improves Backdoor
Attacks in Federated Learning [102.05872020792603]
我々は,他のクライアントの行動を含む,連合学習パイプライン全体の予測と説明を行う攻撃を提案する。
この新たな攻撃は、ランダムにサンプリングされたラウンドのごく一部にアタッカーが貢献する現実的なシナリオにおいて有効であることを示す。
論文 参考訳(メタデータ) (2022-10-17T17:59:38Z) - A Game-Theoretic Approach for AI-based Botnet Attack Defence [5.020067709306813]
新しい世代のボットネットは、AI(Artificial Intelligent)技術を利用して、ボットマスターのアイデンティティと、検出を避けるための攻撃意図を隠蔽する。
この種のAIベースのボットネット攻撃に対する既存の防衛戦略の有効性を評価することのできる、既存のアセスメントツールが存在しない。
我々は,Nash Equilibrium (NE) に到達するためにボットネット攻撃者やディフェンダーが使用できる潜在的戦略の詳細を分析することができる逐次ゲーム理論モデルを提案する。
論文 参考訳(メタデータ) (2021-12-04T02:53:40Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
ネットワーク分類器に対するブラックボックス攻撃について検討する。
我々は、アタッカー・ディフェンダーの固定点がそれ自体、複雑な位相遷移を持つ一般サムゲームであると主張する。
攻撃防御力学の研究には連続的な学習手法が必要であることを示す。
論文 参考訳(メタデータ) (2021-11-23T23:42:16Z) - Unrestricted Adversarial Attacks on ImageNet Competition [70.8952435964555]
制限のない敵攻撃は一般的で実践的な方向であるが、徹底的に研究されていない。
我々はこの競争を、より効果的に非制限の敵攻撃アルゴリズムを探索するために組織する。
論文 参考訳(メタデータ) (2021-10-17T04:27:15Z) - Widen The Backdoor To Let More Attackers In [24.540853975732922]
マルチエージェントバックドア攻撃のシナリオについて検討し、複数の非衝突攻撃者が共有データセットにトリガサンプルを挿入する。
攻撃者数の増加は攻撃者の攻撃成功率を減少させる。
そして、この現象を利用して攻撃者の集合的ASRを最小化し、防御者の堅牢性を最大化する。
論文 参考訳(メタデータ) (2021-10-09T13:53:57Z) - Game Theory for Adversarial Attacks and Defenses [0.0]
敵攻撃は、データセットのサンプルに小さなが故意に最悪の摂動を適用することで、敵の入力を生成することができる。
いくつかの敵防衛技術は、モデルの安全性と堅牢性を改善し、攻撃を避けるために開発されている。
論文 参考訳(メタデータ) (2021-10-08T07:38:33Z) - What Doesn't Kill You Makes You Robust(er): Adversarial Training against
Poisons and Backdoors [57.040948169155925]
敵対的なトレーニングフレームワークを拡張し、(訓練時間)中毒やバックドア攻撃から防御します。
本手法は, トレーニング中に毒を発生させ, トレーニングバッチに注入することにより, ネットワークを中毒の影響に敏感化する。
この防御は、適応攻撃に耐え、多様な脅威モデルに一般化し、以前の防御よりも優れた性能のトレードオフをもたらすことを示す。
論文 参考訳(メタデータ) (2021-02-26T17:54:36Z) - Deflecting Adversarial Attacks [94.85315681223702]
我々は、攻撃者が攻撃対象クラスに似た入力を生成することによって、敵攻撃を「防御」するこのサイクルを終わらせる新しいアプローチを提案する。
本稿ではまず,3つの検出機構を組み合わせたカプセルネットワークに基づくより強力な防御手法を提案する。
論文 参考訳(メタデータ) (2020-02-18T06:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。