A Machine Learning Method for Material Property Prediction: Example
Polymer Compatibility
- URL: http://arxiv.org/abs/2202.13554v1
- Date: Mon, 28 Feb 2022 05:48:05 GMT
- Title: A Machine Learning Method for Material Property Prediction: Example
Polymer Compatibility
- Authors: Zhilong Liang, Zhiwei Li, Shuo Zhou, Yiwen Sun, Changshui Zhang,
Jinying Yuan
- Abstract summary: We present a brand-new and general machine learning method for material property prediction.
As a representative example, polymer compatibility is chosen to demonstrate the effectiveness of our method.
- Score: 39.364776649251944
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prediction of material property is a key problem because of its significance
to material design and screening. We present a brand-new and general machine
learning method for material property prediction. As a representative example,
polymer compatibility is chosen to demonstrate the effectiveness of our method.
Specifically, we mine data from related literature to build a specific database
and give a prediction based on the basic molecular structures of blending
polymers and, as auxiliary, the blending composition. Our model obtains at
least 75% accuracy on the dataset consisting of thousands of entries. We
demonstrate that the relationship between structure and properties can be
learned and simulated by machine learning method.
Related papers
- Foundation Model for Composite Materials and Microstructural Analysis [49.1574468325115]
We present a foundation model specifically designed for composite materials.
Our model is pre-trained on a dataset of short-fiber composites to learn robust latent features.
During transfer learning, the MMAE accurately predicts homogenized stiffness, with an R2 score reaching as high as 0.959 and consistently exceeding 0.91, even when trained on limited data.
arXiv Detail & Related papers (2024-11-10T19:06:25Z) - Extrapolative ML Models for Copolymers [1.901715290314837]
Machine learning models have been progressively used for predicting materials properties.
These models are inherently interpolative, and their efficacy for searching candidates outside a material's known range of property is unresolved.
Here, we determine the relationship between the extrapolation ability of an ML model, the size and range of its training dataset, and its learning approach.
arXiv Detail & Related papers (2024-09-15T11:02:01Z) - Data-efficient and Interpretable Inverse Materials Design using a Disentangled Variational Autoencoder [2.563209727695243]
Inverse materials design has proven successful in accelerating novel material discovery.
Many inverse materials design methods use unsupervised learning where a latent space is learned to offer a compact description of materials representations.
Here, we present a semi-supervised learning approach based on a disentangled variational autoencoder to learn a probabilistic relationship between features, latent variables and target properties.
arXiv Detail & Related papers (2024-09-10T02:21:13Z) - Alchemist: Parametric Control of Material Properties with Diffusion
Models [51.63031820280475]
Our method capitalizes on the generative prior of text-to-image models known for photorealism.
We show the potential application of our model to material edited NeRFs.
arXiv Detail & Related papers (2023-12-05T18:58:26Z) - Automatically Predict Material Properties with Microscopic Image Example
Polymer Compatibility [94.40113383292139]
Computer image recognition with machine learning method can make up the defects of artificial judging.
We achieve automatic miscibility recognition utilizing convolution neural network and transfer learning method.
The proposed method can be widely applied to the quantitative characterization of the microstructure and properties of various materials.
arXiv Detail & Related papers (2023-03-22T07:51:32Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Improving VAE based molecular representations for compound property
prediction [0.0]
We propose a simple method to improve chemical property prediction performance of machine learning models.
We show the relation between the performance of property prediction models and the distance between property prediction dataset and the larger unlabeled dataset.
arXiv Detail & Related papers (2022-01-13T12:57:11Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Machine Learning for Material Characterization with an Application for
Predicting Mechanical Properties [0.0]
This study is an attempt to investigate the usefulness of machine learning methods for material property prediction.
In industry, material tests like tensile tests, compression tests or creep tests are often time consuming and expensive to perform.
This study also gives an application of machine learning methods on small punch test data for the determination of the property ultimate tensile strength for various materials.
arXiv Detail & Related papers (2020-10-12T20:30:27Z) - Machine learning with persistent homology and chemical word embeddings
improves prediction accuracy and interpretability in metal-organic frameworks [0.07874708385247352]
We introduce an end-to-end machine learning model that automatically generates descriptors that capture a complex representation of a material's structure and chemistry.
It automatically encapsulates geometric and chemical information directly from the material system.
Our results show considerable improvement in both accuracy and transferability across targets compared to models constructed from the commonly-used, manually-curated features.
arXiv Detail & Related papers (2020-10-01T16:31:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.