Extrapolative ML Models for Copolymers
- URL: http://arxiv.org/abs/2409.09691v1
- Date: Sun, 15 Sep 2024 11:02:01 GMT
- Title: Extrapolative ML Models for Copolymers
- Authors: Israrul H. Hashmi, Himanshu, Rahul Karmakar, Tarak K Patra,
- Abstract summary: Machine learning models have been progressively used for predicting materials properties.
These models are inherently interpolative, and their efficacy for searching candidates outside a material's known range of property is unresolved.
Here, we determine the relationship between the extrapolation ability of an ML model, the size and range of its training dataset, and its learning approach.
- Score: 1.901715290314837
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning models have been progressively used for predicting materials properties. These models can be built using pre-existing data and are useful for rapidly screening the physicochemical space of a material, which is astronomically large. However, ML models are inherently interpolative, and their efficacy for searching candidates outside a material's known range of property is unresolved. Moreover, the performance of an ML model is intricately connected to its learning strategy and the volume of training data. Here, we determine the relationship between the extrapolation ability of an ML model, the size and range of its training dataset, and its learning approach. We focus on a canonical problem of predicting the properties of a copolymer as a function of the sequence of its monomers. Tree search algorithms, which learn the similarity between polymer structures, are found to be inefficient for extrapolation. Conversely, the extrapolation capability of neural networks and XGBoost models, which attempt to learn the underlying functional correlation between the structure and property of polymers, show strong correlations with the volume and range of training data. These findings have important implications on ML-based new material development.
Related papers
- Achieving interpretable machine learning by functional decomposition of black-box models into explainable predictor effects [4.3500439062103435]
We propose a novel approach for the functional decomposition of black-box predictions.
Similar to additive regression models, our method provides insights into the direction and strength of the main feature contributions.
arXiv Detail & Related papers (2024-07-26T10:37:29Z) - When does deep learning fail and how to tackle it? A critical analysis
on polymer sequence-property surrogate models [1.0152838128195467]
Deep learning models are gaining popularity and potency in predicting polymer properties.
These models can be built using pre-existing data and are useful for the rapid prediction of polymer properties.
However, the performance of a deep learning model is intricately connected to its topology and the volume of training data.
arXiv Detail & Related papers (2022-10-12T23:04:10Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - Enhancing Mechanical Metamodels with a Generative Model-Based Augmented
Training Dataset [0.7734726150561089]
Microstructural patterns, which play a major role in defining the mechanical behavior of tissues, are difficult to simulate.
In this work, we investigate the efficacy of machine learning-based generative models as a tool for augmenting limited input pattern datasets.
We have created an open access dataset of Finite Element Analysis simulations based on Cahn-Hilliard patterns.
arXiv Detail & Related papers (2022-03-08T16:15:54Z) - Bayesian Active Learning for Discrete Latent Variable Models [19.852463786440122]
Active learning seeks to reduce the amount of data required to fit the parameters of a model.
latent variable models play a vital role in neuroscience, psychology, and a variety of other engineering and scientific disciplines.
arXiv Detail & Related papers (2022-02-27T19:07:12Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Generalized Matrix Factorization: efficient algorithms for fitting
generalized linear latent variable models to large data arrays [62.997667081978825]
Generalized Linear Latent Variable models (GLLVMs) generalize such factor models to non-Gaussian responses.
Current algorithms for estimating model parameters in GLLVMs require intensive computation and do not scale to large datasets.
We propose a new approach for fitting GLLVMs to high-dimensional datasets, based on approximating the model using penalized quasi-likelihood.
arXiv Detail & Related papers (2020-10-06T04:28:19Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.