Machine Learning for Material Characterization with an Application for
Predicting Mechanical Properties
- URL: http://arxiv.org/abs/2010.06010v1
- Date: Mon, 12 Oct 2020 20:30:27 GMT
- Title: Machine Learning for Material Characterization with an Application for
Predicting Mechanical Properties
- Authors: Anke Stoll, Peter Benner
- Abstract summary: This study is an attempt to investigate the usefulness of machine learning methods for material property prediction.
In industry, material tests like tensile tests, compression tests or creep tests are often time consuming and expensive to perform.
This study also gives an application of machine learning methods on small punch test data for the determination of the property ultimate tensile strength for various materials.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Currently, the growth of material data from experiments and simulations is
expanding beyond processable amounts. This makes the development of new
data-driven methods for the discovery of patterns among multiple lengthscales
and time-scales and structure-property relationships essential. These
data-driven approaches show enormous promise within materials science. The
following review covers machine learning applications for metallic material
characterization. Many parameters associated with the processing and the
structure of materials affect the properties and the performance of
manufactured components. Thus, this study is an attempt to investigate the
usefulness of machine learning methods for material property prediction.
Material characteristics such as strength, toughness, hardness, brittleness or
ductility are relevant to categorize a material or component according to their
quality. In industry, material tests like tensile tests, compression tests or
creep tests are often time consuming and expensive to perform. Therefore, the
application of machine learning approaches is considered helpful for an easier
generation of material property information. This study also gives an
application of machine learning methods on small punch test data for the
determination of the property ultimate tensile strength for various materials.
A strong correlation between small punch test data and tensile test data was
found which ultimately allows to replace more costly tests by simple and fast
tests in combination with machine learning.
Related papers
- SciQu: Accelerating Materials Properties Prediction with Automated Literature Mining for Self-Driving Laboratories [0.7673339435080445]
Assessing different material properties to predict specific attributes is a fundamental requirement for materials science-based applications.
Our study addresses these challenges by leveraging machine learning to analyze material properties with greater precision and efficiency.
By automating the data extraction process and using the extracted information to train machine learning models, our developed model, SciQu, optimize material properties.
arXiv Detail & Related papers (2024-07-11T08:12:46Z) - Alchemist: Parametric Control of Material Properties with Diffusion
Models [51.63031820280475]
Our method capitalizes on the generative prior of text-to-image models known for photorealism.
We show the potential application of our model to material edited NeRFs.
arXiv Detail & Related papers (2023-12-05T18:58:26Z) - Multimodal Learning for Materials [7.167520424757711]
We introduce Multimodal Learning for Materials (MultiMat), which enables self-supervised multi-modality training of foundation models for materials.
We demonstrate our framework's potential using data from the Materials Project database on multiple axes.
arXiv Detail & Related papers (2023-11-30T18:35:29Z) - Multimodal machine learning for materials science: composition-structure
bimodal learning for experimentally measured properties [4.495968252019426]
This paper introduces a novel approach to multimodal machine learning in materials science via composition-structure bimodal learning.
The proposed COmposition-Structure Bimodal Network (COSNet) is designed to enhance learning and predictions of experimentally measured materials properties that have incomplete structure information.
arXiv Detail & Related papers (2023-08-04T02:04:52Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
arXiv Detail & Related papers (2022-09-05T16:48:34Z) - Tyger: Task-Type-Generic Active Learning for Molecular Property
Prediction [121.97742787439546]
How to accurately predict the properties of molecules is an essential problem in AI-driven drug discovery.
To reduce annotation cost, deep Active Learning methods are developed to select only the most representative and informative data for annotating.
We propose a Task-type-generic active learning framework (termed Tyger) that is able to handle different types of learning tasks in a unified manner.
arXiv Detail & Related papers (2022-05-23T12:56:12Z) - A Machine Learning Method for Material Property Prediction: Example
Polymer Compatibility [39.364776649251944]
We present a brand-new and general machine learning method for material property prediction.
As a representative example, polymer compatibility is chosen to demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2022-02-28T05:48:05Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
We develop a new interpretable, multi-resolution machine learning framework for finding patterns in the unit-cells of materials.
Specifically, we propose two new interpretable representations of metamaterials, called shape-frequency features and unit-cell templates.
arXiv Detail & Related papers (2021-11-10T21:19:02Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
Both politics and pandemics have recently provided ample motivation for the development of machine learning-enabled disinformation (a.k.a. fake news) detection algorithms.
Existing literature has focused primarily on the fully-automated case, but the resulting techniques cannot reliably detect disinformation on the varied topics, sources, and time scales required for military applications.
By leveraging an already-available analyst as a human-in-the-loop, canonical machine learning techniques of sentiment analysis, aspect-based sentiment analysis, and stance detection become plausible methods to use for a partially-automated disinformation detection system.
arXiv Detail & Related papers (2021-11-09T13:30:34Z) - Prediction of properties of metal alloy materials based on machine
learning [6.827605235800052]
In this paper, we conduct experiments on atomic volume, atomic energy and atomic formation energy of metal alloys.
Through the traditional machine learning models, deep learning network and automated machine learning, we verify the feasibility of machine learning in material property prediction.
The experimental results show that the machine learning can predict the material properties accurately.
arXiv Detail & Related papers (2021-09-20T09:40:36Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
This study aims to automate and forecast the effect of laser processing on material structures.
The focus is centred on the performance of representative statistical and machine learning algorithms.
Results can set the basis for a systematic methodology towards reducing material design, testing and production cost.
arXiv Detail & Related papers (2020-06-13T17:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.