論文の概要: Bina-Rep Event Frames: a Simple and Effective Representation for
Event-based cameras
- arxiv url: http://arxiv.org/abs/2202.13662v1
- Date: Mon, 28 Feb 2022 10:23:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-01 16:35:32.415977
- Title: Bina-Rep Event Frames: a Simple and Effective Representation for
Event-based cameras
- Title(参考訳): Bina-Rep Event Frames: イベントベースカメラのシンプルで効果的な表現
- Authors: Sami Barchid, Jos\'e Mennesson and Chaabane Dj\'eraba
- Abstract要約: ビナ・レップ(Bina-Rep)は、イベントカメラからのイベントの非同期ストリームを、スパースで表現豊かなイベントフレームのシーケンスに変換するシンプルな表現法である。
本手法では,元のストリームにおけるイベント順序に関する保持情報により,より表現力のあるイベントフレームを抽出することができる。
- 参考スコア(独自算出の注目度): 1.6114012813668934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents "Bina-Rep", a simple representation method that converts
asynchronous streams of events from event cameras to a sequence of sparse and
expressive event frames. By representing multiple binary event images as a
single frame of $N$-bit numbers, our method is able to obtain sparser and more
expressive event frames thanks to the retained information about event orders
in the original stream. Coupled with our proposed model based on a
convolutional neural network, the reported results achieve state-of-the-art
performance and repeatedly outperforms other common event representation
methods. Our approach also shows competitive robustness against common image
corruptions, compared to other representation techniques.
- Abstract(参考訳): 本稿では、イベントの非同期ストリームをイベントカメラからスパースで表現豊かなイベントフレームのシーケンスに変換するシンプルな表現手法であるbina-repを提案する。
複数のバイナリイベントイメージを1フレームの$N$-bitの数値で表現することにより、元のストリームにおけるイベント順序に関する保持情報により、より表現力のあるイベントフレームを得ることができる。
畳み込みニューラルネットワークに基づく提案モデルと組み合わせて、報告した結果が最先端の性能を達成し、他の一般的なイベント表現手法を何度も上回ります。
我々のアプローチは、他の表現技法と比較して、一般的な画像の破損に対する競争力を示す。
関連論文リスト
- Text-to-Events: Synthetic Event Camera Streams from Conditional Text Input [8.365349007799296]
イベントカメラは、低レイテンシとスパース出力応答を持つ視覚センサーを必要とするタスクに有利である。
本稿では,テキスト・ツー・Xモデルを用いてラベル付きイベント・データセットを新たに作成する方法を報告する。
本モデルでは,異なる文文によって引き起こされる人間のジェスチャーのリアルなイベントシーケンスを生成できることを実証する。
論文 参考訳(メタデータ) (2024-06-05T16:34:12Z) - Event-aware Video Corpus Moment Retrieval [79.48249428428802]
Video Corpus Moment Retrieval(VCMR)は、未編集ビデオの膨大なコーパス内の特定の瞬間を特定することに焦点を当てた、実用的なビデオ検索タスクである。
VCMRの既存の方法は、典型的にはフレーム対応のビデオ検索に依存し、クエリとビデオフレーム間の類似性を計算して、ビデオをランク付けする。
本研究では,ビデオ検索の基本単位として,ビデオ内のイベントを明示的に活用するモデルであるEventFormerを提案する。
論文 参考訳(メタデータ) (2024-02-21T06:55:20Z) - Representation Learning on Event Stream via an Elastic Net-incorporated
Tensor Network [1.9515859963221267]
本稿では,イベントストリーム中のすべてのイベントのグローバルな相関を同時に取得できる新しい表現法を提案する。
本手法は, 最先端手法と比較して, フィルタノイズなどの応用において有効な結果が得られる。
論文 参考訳(メタデータ) (2024-01-16T02:51:47Z) - Neuromorphic Imaging and Classification with Graph Learning [11.882239213276392]
バイオインスパイアされたニューロモルフィックカメラは、画素輝度変化を非同期に記録し、スパースイベントストリームを生成する。
多次元アドレスイベント構造のため、既存の視覚アルゴリズムは非同期イベントストリームを適切に扱えない。
イベントデータの新しいグラフ表現を提案し,それをグラフ変換器と組み合わせて正確なニューロモルフィック分類を行う。
論文 参考訳(メタデータ) (2023-09-27T12:58:18Z) - Graph-based Asynchronous Event Processing for Rapid Object Recognition [59.112755601918074]
イベントカメラは、各イベントがピクセル位置、トリガ時間、明るさの極性が変化するような非同期イベントストリームをキャプチャする。
イベントカメラのための新しいグラフベースのフレームワーク、SlideGCNを紹介した。
当社のアプローチでは、データをイベント単位で効率的に処理し、内部でグラフの構造を維持しながら、イベントデータの低レイテンシ特性を解放することが可能です。
論文 参考訳(メタデータ) (2023-08-28T08:59:57Z) - Event Transformer [43.193463048148374]
イベントカメラの消費電力が低く、マイクロ秒の明るさを捉える能力は、様々なコンピュータビジョンタスクにとって魅力的である。
既存のイベント表現方法は通常、イベントをフレーム、ボクセルグリッド、ディープニューラルネットワーク(DNN)のスパイクに変換する。
この研究はトークンベースの新しいイベント表現を導入し、各イベントはイベントトークンと呼ばれる基本的な処理ユニットと見なされる。
論文 参考訳(メタデータ) (2022-04-11T15:05:06Z) - MEFNet: Multi-scale Event Fusion Network for Motion Deblurring [62.60878284671317]
従来のフレームベースのカメラは、長時間露光のために必然的に動きがぼやけている。
バイオインスパイアされたカメラの一種として、イベントカメラは、高時間分解能で非同期な方法で強度変化を記録する。
本稿では,イベントベースの画像劣化問題を再考し,これをエンドツーエンドの2段階画像復元ネットワークに展開する。
論文 参考訳(メタデータ) (2021-11-30T23:18:35Z) - Bridging the Gap between Events and Frames through Unsupervised Domain
Adaptation [57.22705137545853]
本稿では,ラベル付き画像とラベル付きイベントデータを用いてモデルを直接訓練するタスク転送手法を提案する。
生成イベントモデルを利用して、イベント機能をコンテンツとモーションに分割します。
われわれのアプローチは、イベントベースのニューラルネットワークのトレーニングのために、膨大な量の既存の画像データセットをアンロックする。
論文 参考訳(メタデータ) (2021-09-06T17:31:37Z) - Unsupervised Feature Learning for Event Data: Direct vs Inverse Problem
Formulation [53.850686395708905]
イベントベースのカメラは、ピクセルごとの明るさ変化の非同期ストリームを記録する。
本稿では,イベントデータからの表現学習のための単一層アーキテクチャに焦点を当てる。
我々は,最先端手法と比較して,認識精度が最大9%向上したことを示す。
論文 参考訳(メタデータ) (2020-09-23T10:40:03Z) - Team RUC_AIM3 Technical Report at Activitynet 2020 Task 2: Exploring
Sequential Events Detection for Dense Video Captioning [63.91369308085091]
本稿では、イベントシーケンス生成のための新規でシンプルなモデルを提案し、ビデオ中のイベントシーケンスの時間的関係を探索する。
提案モデルでは,非効率な2段階提案生成を省略し,双方向時間依存性を条件としたイベント境界を直接生成する。
総合システムは、チャレンジテストセットの9.894 METEORスコアで、ビデオタスクにおける密封イベントの最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-06-14T13:21:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。