論文の概要: Selection, Ignorability and Challenges With Causal Fairness
- arxiv url: http://arxiv.org/abs/2202.13774v2
- Date: Wed, 2 Mar 2022 10:21:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-03 13:00:00.295308
- Title: Selection, Ignorability and Challenges With Causal Fairness
- Title(参考訳): 因果フェアネスによる選択・無視・挑戦
- Authors: Jake Fawkes, Robin Evans, Dino Sejdinovic
- Abstract要約: 我々は、このようなことが可能なモデルは、フェアネス文学で一般的に見なされるよく振る舞うクラスの外にある必要があると論じる。
多くのケースでは、より広い人口からサンプルが選択されているため、明示的に拒否することができる。
- 参考スコア(独自算出の注目度): 9.106412307976067
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we look at popular fairness methods that use causal
counterfactuals. These methods capture the intuitive notion that a prediction
is fair if it coincides with the prediction that would have been made if
someone's race, gender or religion were counterfactually different. In order to
achieve this, we must have causal models that are able to capture what someone
would be like if we were to counterfactually change these traits. However, we
argue that any model that can do this must lie outside the particularly well
behaved class that is commonly considered in the fairness literature. This is
because in fairness settings, models in this class entail a particularly strong
causal assumption, normally only seen in a randomised controlled trial. We
argue that in general this is unlikely to hold. Furthermore, we show in many
cases it can be explicitly rejected due to the fact that samples are selected
from a wider population. We show this creates difficulties for counterfactual
fairness as well as for the application of more general causal fairness
methods.
- Abstract(参考訳): 本稿では,因果カウンターファクトを用いた人気フェアネス手法について考察する。
これらの手法は、誰かの人種、性別、宗教が事実上異なる場合の予測と一致する場合、予測が公平であるという直感的な考えを捉えている。
これを達成するためには、反証的にこれらの特徴を変えるためには、誰かの姿をキャプチャできる因果モデルが必要です。
しかし、このようなことが可能なモデルは、フェアネス文学において一般的に考慮される、特によく振る舞うクラスの外にある必要があると論じる。
これは、公平性の設定において、このクラスのモデルは特に強い因果仮定を伴い、通常ランダムに制御されたトライアルでのみ見られるためである。
一般論として、これはありそうにない。
また,より広い個体群からサンプルが選択されていることから,明確に否定されるケースが多い。
このことは, 対実的公正性や, より一般的な因果的公正性手法の適用に困難をもたらすことを示す。
関連論文リスト
- "Patriarchy Hurts Men Too." Does Your Model Agree? A Discussion on Fairness Assumptions [3.706222947143855]
グループフェアネスの文脈では、このアプローチはデータへのバイアスの導入方法に関する暗黙の仮定を曖昧にすることが多い。
我々は偏りの過程が公正スコアの単調関数であり、感度属性のみに依存すると仮定している。
偏見過程の振舞いは単なる単調性よりも複雑であり、つまり暗黙の仮定を特定し、否定する必要がある。
論文 参考訳(メタデータ) (2024-08-01T07:06:30Z) - Distributionally Generative Augmentation for Fair Facial Attribute Classification [69.97710556164698]
Facial Attribute Classification (FAC) は広く応用されている。
従来の手法で訓練されたFACモデルは、様々なデータサブポピュレーションにまたがる精度の不整合を示すことによって不公平である可能性がある。
本研究は,付加アノテーションなしでバイアスデータ上で公正なFACモデルをトレーニングするための,新しい世代ベースの2段階フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-11T10:50:53Z) - How Far Can Fairness Constraints Help Recover From Biased Data? [9.430687114814997]
公平な分類に関する一般的な信念は、公正な制約は正確さとトレードオフを引き起こし、バイアスのあるデータが悪化する可能性があるというものである。
この信念とは対照的に、Blum & Stangl は、非常に偏りのあるデータであっても、同じ機会制約による公平な分類は、元のデータ分布上で最適に正確かつ公平な分類を回復できることを示した。
論文 参考訳(メタデータ) (2023-12-16T09:49:31Z) - Causal Context Connects Counterfactual Fairness to Robust Prediction and
Group Fairness [15.83823345486604]
我々は、公正性と正確性の間に根本的なトレードオフがないことを示すことによって、事実的公正を動機付けます。
対実フェアネスは、比較的単純なグループフェアネスの測定によってテストされることがある。
論文 参考訳(メタデータ) (2023-10-30T16:07:57Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Counterfactual Fairness with Partially Known Causal Graph [85.15766086381352]
本稿では,真の因果グラフが不明な場合に,対実フェアネスの概念を実現するための一般的な手法を提案する。
特定の背景知識が提供されると、正の因果グラフが完全に知られているかのように、反ファクト的公正性を達成することができる。
論文 参考訳(メタデータ) (2022-05-27T13:40:50Z) - On Disentangled and Locally Fair Representations [95.6635227371479]
人種や性別などのセンシティブなグループに対して公平な方法で分類を行うという課題について検討する。
局所的公正表現を学習し、学習された表現の下で、各サンプルの近傍は感度特性の観点からバランスをとる。
論文 参考訳(メタデータ) (2022-05-05T14:26:50Z) - Towards Equal Opportunity Fairness through Adversarial Learning [64.45845091719002]
逆行訓練は、自然言語処理におけるバイアス緩和の一般的なアプローチである。
本稿では、よりリッチな特徴を生み出すために、ターゲットクラスをインプットとして利用する、対位訓練のための拡張判別器を提案する。
論文 参考訳(メタデータ) (2022-03-12T02:22:58Z) - Identifiability of Causal-based Fairness Notions: A State of the Art [4.157415305926584]
機械学習アルゴリズムは、偏見のある結果/予測を生成することができ、通常は少数派や少数民族に対するものである。
本論文は,機械学習の公正性に特に関係する主要な識別可能性の結果をまとめたものである。
論文 参考訳(メタデータ) (2022-03-11T13:10:32Z) - Biased Models Have Biased Explanations [10.9397029555303]
機械学習モデルで生成された属性に基づく説明のレンズを通して、機械学習(FairML)の公平性を検討します。
まず、群フェアネスの既存の統計的概念を翻訳し、モデルから与えられた説明の観点からこれらの概念を定義する。
そこで本研究では,ブラックボックスモデルに対する新しい(不公平な)検出方法を提案する。
論文 参考訳(メタデータ) (2020-12-20T18:09:45Z) - Fairness Through Robustness: Investigating Robustness Disparity in Deep
Learning [61.93730166203915]
我々は、モデルが敵の攻撃に弱い場合、従来の公平性の概念では不十分であると主張する。
頑健性バイアスを測定することはDNNにとって難しい課題であり,この2つの方法を提案する。
論文 参考訳(メタデータ) (2020-06-17T22:22:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。