論文の概要: Severity classification in cases of Collagen VI-related myopathy with
Convolutional Neural Networks and handcrafted texture features
- arxiv url: http://arxiv.org/abs/2202.13853v1
- Date: Mon, 28 Feb 2022 15:09:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-01 17:28:47.991889
- Title: Severity classification in cases of Collagen VI-related myopathy with
Convolutional Neural Networks and handcrafted texture features
- Title(参考訳): 畳み込みニューラルネットワークと手作りテクスチャ特徴を有するコラーゲンvi関連ミオパチーの重症度分類
- Authors: Rafael Rodrigues, Susana Quijano-Roy, Robert-Yves Carlier, and Antonio
M. G. Pinheiro
- Abstract要約: コラーゲンVI関連ミオパチーにおける標的筋の分類法として3つの方法が提案されている。
最も良い結果がハイブリッドモデルで得られ、その結果、全世界での精度は93.8%となった。
- 参考スコア(独自算出の注目度): 0.34998703934432684
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Magnetic Resonance Imaging (MRI) is a non-invasive tool for the clinical
assessment of low-prevalence neuromuscular disorders. Automated diagnosis
methods might reduce the need for biopsies and provide valuable information on
disease follow-up. In this paper, three methods are proposed to classify target
muscles in Collagen VI-related myopathy cases, based on their degree of
involvement, notably a Convolutional Neural Network, a Fully Connected Network
to classify texture features, and a hybrid method combining the two feature
sets. The proposed methods was evaluated on axial T1-weighted Turbo Spin-Echo
MRI from 26 subjects, including Ullrich Congenital Muscular Dystrophy or
Bethlem Myopathy patients at different evolution stages. The best results were
obtained with the hybrid model, resulting in a global accuracy of 93.8\%, and
F-scores of 0.99, 0.82, and 0.95, for healthy, mild and moderate/severe cases,
respectively.
- Abstract(参考訳): MRIは低頻度神経筋疾患の臨床評価のための非侵襲的ツールである。
自動診断法は、生検の必要性を減らし、疾患追跡に関する貴重な情報を提供する。
本稿では,その関与度,特に畳み込みニューラルネットワーク,テクスチャ特徴を分類する完全連結ネットワーク,これら2つの特徴点を組み合わせたハイブリッド手法に基づいて,コラーゲンvi関連ミオパチー症例の目標筋を分類する3つの方法を提案する。
先天性筋ジストロフィーやベスレム・ミオパチー患者を含む26例の軸方向t1強調ターボスピンエコーmriを用いた検討を行った。
その結果, 健康, 軽度, 中等度, 中等度, 中等度および中等度において, 最高値が93.8\%, f-スコアが0.99, 0.82, 0.95であった。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
本研究では,3次元MRIを用いたアルツハイマー病診断の革新的手法を提案する。
提案手法では,2次元CNNがボリューム表現を抽出できるソフトアテンション機構を採用している。
ボクセルレベルの精度では、どの領域に注意が払われているかを同定し、これらの支配的な脳領域を同定する。
論文 参考訳(メタデータ) (2024-07-02T16:44:00Z) - Classification of Radiologically Isolated Syndrome and Clinically
Isolated Syndrome with Machine-Learning Techniques [0.0]
多発性硬化症(MS)を示唆する無症候性白質病変の脳におけるMRIによる予期せぬ検出は、放射線学的に孤立した症候群(RIS)と命名された。
本研究の目的は, RIS 患者と CIS 患者を識別する手段として, 機械学習の分類手法を用いて形態計測指標を同定することであった。
論文 参考訳(メタデータ) (2024-01-24T08:49:50Z) - Neural Network-Based Histologic Remission Prediction In Ulcerative
Colitis [38.150634108667774]
潰瘍性大腸炎(UC)の新しい治療標的としての組織学的寛解
内視鏡(Endocytoscopy、EC)は、新しい超高倍率内視鏡技術である。
本稿では,心電図の組織学的疾患活動を評価するニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2023-08-28T15:54:14Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
胸部超音波(BUS)画像分類において,グローバルな文脈情報の収集が重要な役割を担っている。
ビジョントランスフォーマーは、グローバルなコンテキスト情報をキャプチャする能力が改善されているが、トークン化操作によって局所的なイメージパターンを歪めてしまう可能性がある。
本研究では,BUS腫瘍分類とセグメンテーションを行うハイブリッドマルチタスクディープニューラルネットワークであるHybrid-MT-ESTANを提案する。
論文 参考訳(メタデータ) (2023-08-04T01:19:32Z) - Multiple Instance Ensembling For Paranasal Anomaly Classification In The
Maxillary Sinus [46.1292414445895]
副鼻腔奇形は幅広い形態学的特徴を持つ。
副鼻腔異常分類への現在のアプローチは、一度に1つの異常を特定することに制約されている。
3次元畳み込みニューラルネットワーク(CNN)を用いて正常上顎骨(MS)とMSをポリープや嚢胞で分類する可能性を検討した。
論文 参考訳(メタデータ) (2023-03-31T09:23:27Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
深層学習モデルは、2011年1月から2018年4月までに収集された非外傷性ICHを用いた1868個のNCCTスキャンを用いて開発された。
診断成績は臨床医の成績と比較した。
臨床医は, システム拡張による特定の出血エチオロジーの感度, 特異性, 精度を著しく改善した。
論文 参考訳(メタデータ) (2023-02-02T08:45:17Z) - MRI-based classification of IDH mutation and 1p/19q codeletion status of
gliomas using a 2.5D hybrid multi-task convolutional neural network [0.18374319565577152]
グリオーマにおけるIsocitrate dehydrogenase変異と1p/19q符号欠失は重要な予後マーカーである。
我々の目標は、MRIからこれらの分子変化を非侵襲的に決定する人工知能ベースの手法を開発することであった。
2.5Dハイブリッド畳み込みニューラルネットワークは、腫瘍を同時に局在させ、その分子状態を分類するために提案された。
論文 参考訳(メタデータ) (2022-10-07T18:46:39Z) - A New Deep Hybrid Boosted and Ensemble Learning-based Brain Tumor
Analysis using MRI [0.28675177318965034]
磁気共鳴画像(MRI)における脳腫瘍の検出・分類のための2段階深層学習フレームワークの提案
第1フェーズでは、健康な人から腫瘍MRI画像を検出するために、新しい深層化特徴とアンサンブル分類器(DBF-EC)方式が提案されている。
第2段階では, 異なる腫瘍タイプを分類するために, 動的静的特徴とML分類器からなる融合型脳腫瘍分類法が提案されている。
論文 参考訳(メタデータ) (2022-01-14T10:24:47Z) - Deep Orthogonal Fusion: Multimodal Prognostic Biomarker Discovery
Integrating Radiology, Pathology, Genomic, and Clinical Data [0.32622301272834525]
グリオーマ患者の生存率 (OS) を, 深層直交核融合モデルを用いて予測した。
このモデルは、MRI検査、生検に基づくモダリティ、臨床変数から得た情報を総合的なマルチモーダルリスクスコアに組み合わせることを学ぶ。
グリオーマ患者を臨床的サブセット内でOSにより明らかに層分けし、予後不良な臨床グレーディングと分子サブタイプにさらに粒度を付加する。
論文 参考訳(メタデータ) (2021-07-01T17:59:01Z) - Confidence-guided Lesion Mask-based Simultaneous Synthesis of Anatomic
and Molecular MR Images in Patients with Post-treatment Malignant Gliomas [65.64363834322333]
信頼性ガイドSAMR(CG-SAMR)は、病変情報からマルチモーダル解剖学的配列にデータを合成する。
モジュールは中間結果に対する信頼度測定に基づいて合成をガイドする。
実際の臨床データを用いた実験により,提案モデルが最先端の合成法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-08-06T20:20:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。