Voxelmorph++ Going beyond the cranial vault with keypoint supervision
and multi-channel instance optimisation
- URL: http://arxiv.org/abs/2203.00046v1
- Date: Mon, 28 Feb 2022 19:23:29 GMT
- Title: Voxelmorph++ Going beyond the cranial vault with keypoint supervision
and multi-channel instance optimisation
- Authors: Mattias P. Heinrich and Lasse Hansen
- Abstract summary: Recent Learn2Reg benchmark shows single-scale U-Net architectures fall short of state-of-the-art performance for abdominal or intra-patient lung registration.
Here, we propose two straightforward steps that greatly reduce this gap in accuracy.
First, we employ keypoint self-supervision with a novel network head that predicts a discretised heatmap.
Second, we replace multiple learned fine-tuning steps by a single instance with hand-crafted features and the Adam optimiser.
- Score: 8.88841928746097
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The majority of current research in deep learning based image registration
addresses inter-patient brain registration with moderate deformation
magnitudes. The recent Learn2Reg medical registration benchmark has
demonstrated that single-scale U-Net architectures, such as VoxelMorph that
directly employ a spatial transformer loss, often do not generalise well beyond
the cranial vault and fall short of state-of-the-art performance for abdominal
or intra-patient lung registration. Here, we propose two straightforward steps
that greatly reduce this gap in accuracy. First, we employ keypoint
self-supervision with a novel network head that predicts a discretised heatmap
and robustly reduces large deformations for better robustness. Second, we
replace multiple learned fine-tuning steps by a single instance optimisation
with hand-crafted features and the Adam optimiser. Different to other related
work, including FlowNet or PDD-Net, our approach does not require a fully
discretised architecture with correlation layer. Our ablation study
demonstrates the importance of keypoints in both self-supervised and
unsupervised (using only a MIND metric) settings. On a multi-centric
inspiration-exhale lung CT dataset, including very challenging COPD scans, our
method outperforms VoxelMorph by improving nonlinear alignment by 77% compared
to 19% - reaching target registration errors of 2 mm that outperform all but
one learning methods published to date. Extending the method to semantic
features sets new stat-of-the-art performance on inter-subject abdominal CT
registration.
Related papers
- Weakly supervised deep learning model with size constraint for prostate cancer detection in multiparametric MRI and generalization to unseen domains [0.90668179713299]
We show that the model achieves on-par performance with strong fully supervised baseline models.
We also observe a performance decrease for both fully supervised and weakly supervised models when tested on unseen data domains.
arXiv Detail & Related papers (2024-11-04T12:24:33Z) - Minimizing Chebyshev Prototype Risk Magically Mitigates the Perils of Overfitting [1.6574413179773757]
We develop multicomponent loss functions that reduce intra-class feature correlation and maximize inter-class feature distance.
We implement the terms of the Chebyshev Prototype Risk (CPR) bound into our Explicit CPR loss function.
Our training algorithm reduces overfitting and improves upon previous approaches in many settings.
arXiv Detail & Related papers (2024-04-10T15:16:04Z) - Fully Differentiable Correlation-driven 2D/3D Registration for X-ray to CT Image Fusion [3.868072865207522]
Image-based rigid 2D/3D registration is a critical technique for fluoroscopic guided surgical interventions.
We propose a novel fully differentiable correlation-driven network using a dual-branch CNN-transformer encoder.
A correlation-driven loss is proposed for low-frequency feature and high-frequency feature decomposition based on embedded information.
arXiv Detail & Related papers (2024-02-04T14:12:51Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
Node-level graph anomaly detection (GAD) plays a critical role in identifying anomalous nodes from graph-structured data in domains such as medicine, social networks, and e-commerce.
We introduce a simple method termed PREprocessing and Matching (PREM for short) to improve the efficiency of GAD.
Our approach streamlines GAD, reducing time and memory consumption while maintaining powerful anomaly detection capabilities.
arXiv Detail & Related papers (2023-10-18T02:59:57Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Recurrence With Correlation Network for Medical Image Registration [66.63200823918429]
We present Recurrence with Correlation Network (RWCNet), a medical image registration network with multi-scale features and a cost volume layer.
We demonstrate that these architectural features improve medical image registration accuracy in two image registration datasets.
arXiv Detail & Related papers (2023-02-05T02:41:46Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
We propose and investigate several contributions to achieve a parameter-efficient but effective adaptation for semantic segmentation on two medical imaging datasets.
We pre-train this architecture with a dedicated dense self-supervision scheme based on assignments to online generated prototypes.
We demonstrate that the resulting neural network model is able to attenuate the gap between fully fine-tuned and parameter-efficiently adapted models.
arXiv Detail & Related papers (2022-11-16T21:55:05Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
deep neural networks generally require plenty of labeled training data and are vulnerable to domain shifts between training and test data.
We present a novel approach to geometric domain adaptation for image registration, adapting a model from a labeled source to an unlabeled target domain.
Our method consistently improves on the baseline model by 50%/47% while even matching the accuracy of models trained on target data.
arXiv Detail & Related papers (2022-07-01T12:16:42Z) - Learning Multi-Modal Volumetric Prostate Registration with Weak
Inter-Subject Spatial Correspondence [2.6894568533991543]
We introduce an auxiliary input to the neural network for the prior information about the prostate location in the MR sequence.
With weakly labelled MR-TRUS prostate data, we showed registration quality comparable to the state-of-the-art deep learning-based method.
arXiv Detail & Related papers (2021-02-09T16:48:59Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
We propose a two-stage framework, with the first stage to quickly localize the prostate region and the second stage to precisely segment the prostate.
We introduce a novel online metric learning module through voxel-wise sampling in the multi-task network.
Our method can effectively learn more representative voxel-level features compared with the conventional learning methods with cross-entropy or Dice loss.
arXiv Detail & Related papers (2020-05-15T10:37:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.