Addressing Randomness in Evaluation Protocols for Out-of-Distribution
Detection
- URL: http://arxiv.org/abs/2203.00382v1
- Date: Tue, 1 Mar 2022 12:06:44 GMT
- Title: Addressing Randomness in Evaluation Protocols for Out-of-Distribution
Detection
- Authors: Konstantin Kirchheim, Tim Gonschorek, Frank Ortmeier
- Abstract summary: Deep Neural Networks for classification behave unpredictably when confronted with inputs not stemming from the training distribution.
We show that current protocols may fail to provide reliable estimates of the expected performance of OOD methods.
We propose to estimate the performance of OOD methods using a Monte Carlo approach that addresses the randomness.
- Score: 1.8047694351309207
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Neural Networks for classification behave unpredictably when confronted
with inputs not stemming from the training distribution. This motivates
out-of-distribution detection (OOD) mechanisms. The usual lack of prior
information on out-of-distribution data renders the performance estimation of
detection approaches on unseen data difficult. Several contemporary evaluation
protocols are based on open set simulations, which average the performance over
up to five synthetic random splits of a dataset into in- and
out-of-distribution samples. However, the number of possible splits may be much
larger, and the performance of Deep Neural Networks is known to fluctuate
significantly depending on different sources of random variation. We
empirically demonstrate that current protocols may fail to provide reliable
estimates of the expected performance of OOD methods. By casting this
evaluation as a random process, we generalize the concept of open set
simulations and propose to estimate the performance of OOD methods using a
Monte Carlo approach that addresses the randomness.
Related papers
- Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - WOOD: Wasserstein-based Out-of-Distribution Detection [6.163329453024915]
Training data for deep-neural-network-based classifiers are usually assumed to be sampled from the same distribution.
When part of the test samples are drawn from a distribution that is far away from that of the training samples, the trained neural network has a tendency to make high confidence predictions for these OOD samples.
We propose a Wasserstein-based out-of-distribution detection (WOOD) method to overcome these challenges.
arXiv Detail & Related papers (2021-12-13T02:35:15Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
deterministic uncertainty methods (DUMs) achieve strong performance on detecting out-of-distribution data.
It remains unclear whether DUMs are well calibrated and can seamlessly scale to real-world applications.
arXiv Detail & Related papers (2021-07-01T17:59:07Z) - Adversarial Examples Detection with Bayesian Neural Network [57.185482121807716]
We propose a new framework to detect adversarial examples motivated by the observations that random components can improve the smoothness of predictors.
We propose a novel Bayesian adversarial example detector, short for BATer, to improve the performance of adversarial example detection.
arXiv Detail & Related papers (2021-05-18T15:51:24Z) - Statistical Testing for Efficient Out of Distribution Detection in Deep
Neural Networks [26.0303701309125]
This paper frames the Out Of Distribution (OOD) detection problem in Deep Neural Networks as a statistical hypothesis testing problem.
We build on this framework to suggest a novel OOD procedure based on low-order statistics.
Our method achieves comparable or better than state-of-the-art results on well-accepted OOD benchmarks without retraining the network parameters.
arXiv Detail & Related papers (2021-02-25T16:14:47Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
We show that current out-of-distribution (OOD) detection algorithms for neural networks produce unsatisfactory results in a variety of OOD detection scenarios.
This paper studies how such "hard" OOD scenarios can benefit from adjusting the detection method after observing a batch of the test data.
We propose a novel method that uses an artificial labeling scheme for the test data and regularization to obtain ensembles of models that produce contradictory predictions only on the OOD samples in a test batch.
arXiv Detail & Related papers (2020-12-10T16:55:13Z) - Out-of-distribution detection for regression tasks: parameter versus
predictor entropy [2.026281591452464]
It is crucial to detect when an instance lies downright too far from the training samples for the machine learning model to be trusted.
For neural networks, one approach to this task consists of learning a diversity of predictors that all can explain the training data.
We propose a new way of estimating the entropy of a distribution on predictors based on nearest neighbors in function space.
arXiv Detail & Related papers (2020-10-24T21:41:21Z) - Conformal Prediction Intervals for Neural Networks Using Cross
Validation [0.0]
Neural networks are among the most powerful nonlinear models used to address supervised learning problems.
We propose the $k$-fold prediction interval method to construct prediction intervals for neural networks based on $k$-fold cross validation.
arXiv Detail & Related papers (2020-06-30T16:23:28Z) - Posterior Network: Uncertainty Estimation without OOD Samples via
Density-Based Pseudo-Counts [33.45069308137142]
Posterior Network (PostNet) predicts an individual closed-form posterior distribution over predicted probabilites for any input sample.
PostNet achieves state-of-the art results in OOD detection and in uncertainty calibration under dataset shifts.
arXiv Detail & Related papers (2020-06-16T15:16:32Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.