論文の概要: Physics-Constrained Predictive Molecular Latent Space Discovery with
Graph Scattering Variational Autoencoder
- arxiv url: http://arxiv.org/abs/2009.13878v2
- Date: Thu, 11 Feb 2021 09:18:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-13 06:56:21.088015
- Title: Physics-Constrained Predictive Molecular Latent Space Discovery with
Graph Scattering Variational Autoencoder
- Title(参考訳): グラフ散乱変分オートエンコーダを用いた物理制約付き予測分子潜時空間探索
- Authors: Navid Shervani-Tabar, Nicholas Zabaras
- Abstract要約: 我々は小データ構造における変分推論とグラフ理論に基づく分子生成モデルを開発する。
モデルの性能は、所望の目的特性を持つ分子を生成することによって評価される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in artificial intelligence have propelled the development of
innovative computational materials modeling and design techniques. Generative
deep learning models have been used for molecular representation, discovery,
and design. In this work, we assess the predictive capabilities of a molecular
generative model developed based on variational inference and graph theory in
the small data regime. Physical constraints that encourage energetically stable
molecules are proposed. The encoding network is based on the scattering
transform with adaptive spectral filters to allow for better generalization of
the model. The decoding network is a one-shot graph generative model that
conditions atom types on molecular topology. A Bayesian formalism is considered
to capture uncertainties in the predictive estimates of molecular properties.
The model's performance is evaluated by generating molecules with desired
target properties.
- Abstract(参考訳): 最近の人工知能の進歩は、革新的な計算材料モデリングと設計技術の発展を促している。
生成的ディープラーニングモデルは、分子の表現、発見、設計に使われている。
本研究では,小データ領域における変動推論とグラフ理論に基づく分子生成モデルの予測能力を評価する。
エネルギー的に安定な分子を促進する物理的制約が提案されている。
符号化ネットワークは、適応スペクトルフィルタを用いた散乱変換に基づいており、モデルをより一般化することができる。
デコードネットワークは1ショットグラフ生成モデルであり、分子トポロジー上で原子タイプを条件付ける。
ベイズ形式論は分子特性の予測的推定における不確かさを捉えていると考えられている。
モデルの性能は、所望のターゲット特性を持つ分子を生成することによって評価される。
関連論文リスト
- Molecule Design by Latent Prompt Transformer [76.2112075557233]
本研究は、分子設計の課題を条件付き生成モデリングタスクとしてフレーミングすることによって検討する。
本研究では,(1)学習可能な事前分布を持つ潜伏ベクトル,(2)プロンプトとして潜伏ベクトルを用いる因果トランスフォーマーに基づく分子生成モデル,(3)潜在プロンプトを用いた分子の目標特性および/または制約値を予測する特性予測モデルからなる新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2024-02-27T03:33:23Z) - Variational Autoencoding Molecular Graphs with Denoising Diffusion
Probabilistic Model [0.0]
本稿では,階層構造を確率論的潜在ベクトルに組み込んだ新しい深層生成モデルを提案する。
本モデルは,物理特性と活性に関する小さなデータセットを用いて,分子特性予測のための有効な分子潜在ベクトルを設計できることを実証する。
論文 参考訳(メタデータ) (2023-07-02T17:29:41Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
論文 参考訳(メタデータ) (2023-06-08T17:12:08Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Interpretable Molecular Graph Generation via Monotonic Constraints [19.401468196146336]
ディープグラフ生成モデルは、分子設計をグラフ生成問題として扱う。
既存のモデルには多くの欠点があり、解釈性や所望の分子特性に対する制御性が低い。
本稿では,分子生成の解釈可能なモデルと深層制御可能なモデルを用いた新しい手法を提案する。
論文 参考訳(メタデータ) (2022-02-28T08:35:56Z) - Flexible dual-branched message passing neural network for quantum
mechanical property prediction with molecular conformation [16.08677447593939]
メッセージパッシングフレームワークに基づく分子特性予測のための二重分岐ニューラルネットワークを提案する。
本モデルでは,様々なスケールで異種分子の特徴を学習し,予測対象に応じて柔軟に学習する。
論文 参考訳(メタデータ) (2021-06-14T10:00:39Z) - Predicting Aqueous Solubility of Organic Molecules Using Deep Learning
Models with Varied Molecular Representations [3.10678679607547]
本研究の目的は、幅広い有機分子の溶解度を予測できる一般モデルを開発することである。
現在利用可能な最大の溶解度データセットを用いて、分子構造から溶解度を予測するディープラーニングモデルを構築した。
分子ディスクリプタを用いたモデルでは,GNNモデルでも優れた性能が得られた。
論文 参考訳(メタデータ) (2021-05-26T15:54:54Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Conditional Constrained Graph Variational Autoencoders for Molecule
Design [70.59828655929194]
本稿では、このキーイデアを最先端のモデルで実装した、条件制約付きグラフ変分オートエンコーダ(CCGVAE)を提案する。
分子生成のために広く採用されている2つのデータセットについて、いくつかの評価指標について改善した結果を示す。
論文 参考訳(メタデータ) (2020-09-01T21:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。