Physics-Informed Neural Networks for Quantum Eigenvalue Problems
- URL: http://arxiv.org/abs/2203.00451v1
- Date: Thu, 24 Feb 2022 18:29:39 GMT
- Title: Physics-Informed Neural Networks for Quantum Eigenvalue Problems
- Authors: Henry Jin, Marios Mattheakis, Pavlos Protopapas
- Abstract summary: Eigenvalue problems are critical to several fields of science and engineering.
We use unsupervised neural networks for discovering eigenfunctions and eigenvalues for differential eigenvalue problems.
The network optimization is data-free and depends solely on the predictions of the neural network.
- Score: 1.2891210250935146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Eigenvalue problems are critical to several fields of science and
engineering. We expand on the method of using unsupervised neural networks for
discovering eigenfunctions and eigenvalues for differential eigenvalue
problems. The obtained solutions are given in an analytical and differentiable
form that identically satisfies the desired boundary conditions. The network
optimization is data-free and depends solely on the predictions of the neural
network. We introduce two physics-informed loss functions. The first, called
ortho-loss, motivates the network to discover pair-wise orthogonal
eigenfunctions. The second loss term, called norm-loss, requests the discovery
of normalized eigenfunctions and is used to avoid trivial solutions. We find
that embedding even or odd symmetries to the neural network architecture
further improves the convergence for relevant problems. Lastly, a patience
condition can be used to automatically recognize eigenfunction solutions. This
proposed unsupervised learning method is used to solve the finite well,
multiple finite wells, and hydrogen atom eigenvalue quantum problems.
Related papers
- Self-Adaptive Physics-Informed Quantum Machine Learning for Solving Differential Equations [0.0]
Chebyshevs have shown significant promise as an efficient tool for both classical and quantum neural networks to solve differential equations.
We adapt and generalize this framework in a quantum machine learning setting for a variety of problems.
Results indicate a promising approach to the near-term evaluation of differential equations on quantum devices.
arXiv Detail & Related papers (2023-12-14T18:46:35Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
Physics-informed neural networks (PINNs) are a new tool for solving boundary value problems.
Recent investigations have shown that when designing loss functions for many engineering problems, using first-order derivatives and combining equations from both strong and weak forms can lead to much better accuracy.
In this work, we propose applying the mixed formulation to solve multi-physical problems, specifically a stationary thermo-mechanically coupled system of equations.
arXiv Detail & Related papers (2023-02-09T21:56:59Z) - First principles physics-informed neural network for quantum
wavefunctions and eigenvalue surfaces [0.0]
We propose a neural network to discover parametric eigenvalue and eigenfunction surfaces of quantum systems.
We apply our method to solve the hydrogen molecular ion.
arXiv Detail & Related papers (2022-11-08T23:22:42Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Conditional physics informed neural networks [85.48030573849712]
We introduce conditional PINNs (physics informed neural networks) for estimating the solution of classes of eigenvalue problems.
We show that a single deep neural network can learn the solution of partial differential equations for an entire class of problems.
arXiv Detail & Related papers (2021-04-06T18:29:14Z) - Unsupervised Neural Networks for Quantum Eigenvalue Problems [1.2891210250935146]
We present a novel unsupervised neural network for discovering eigenfunctions and eigenvalues for differential eigenvalue problems.
A scanning mechanism is embedded allowing the method to find an arbitrary number of solutions.
arXiv Detail & Related papers (2020-10-10T19:34:37Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.