Unsupervised Neural Networks for Quantum Eigenvalue Problems
- URL: http://arxiv.org/abs/2010.05075v1
- Date: Sat, 10 Oct 2020 19:34:37 GMT
- Title: Unsupervised Neural Networks for Quantum Eigenvalue Problems
- Authors: Henry Jin, Marios Mattheakis, Pavlos Protopapas
- Abstract summary: We present a novel unsupervised neural network for discovering eigenfunctions and eigenvalues for differential eigenvalue problems.
A scanning mechanism is embedded allowing the method to find an arbitrary number of solutions.
- Score: 1.2891210250935146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Eigenvalue problems are critical to several fields of science and
engineering. We present a novel unsupervised neural network for discovering
eigenfunctions and eigenvalues for differential eigenvalue problems with
solutions that identically satisfy the boundary conditions. A scanning
mechanism is embedded allowing the method to find an arbitrary number of
solutions. The network optimization is data-free and depends solely on the
predictions. The unsupervised method is used to solve the quantum infinite well
and quantum oscillator eigenvalue problems.
Related papers
- Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations [58.130170155147205]
Neural wave functions accomplished unprecedented accuracies in approximating the ground state of many-electron systems, though at a high computational cost.
Recent works proposed amortizing the cost by learning generalized wave functions across different structures and compounds instead of solving each problem independently.
This work tackles the problem by defining overparametrized, fully learnable neural wave functions suitable for generalization across molecules.
arXiv Detail & Related papers (2024-05-23T16:30:51Z) - Addressing the Non-perturbative Regime of the Quantum Anharmonic Oscillator by Physics-Informed Neural Networks [0.9374652839580183]
In quantum realm, such approach paves the way to a novel approach to solve the Schroedinger equation for non-integrable systems.
We investigate systems with real and imaginary frequency, laying the foundation for novel numerical methods to tackle problems emerging in quantum field theory.
arXiv Detail & Related papers (2024-05-22T08:34:52Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Physics-Informed Neural Networks for Quantum Eigenvalue Problems [1.2891210250935146]
Eigenvalue problems are critical to several fields of science and engineering.
We use unsupervised neural networks for discovering eigenfunctions and eigenvalues for differential eigenvalue problems.
The network optimization is data-free and depends solely on the predictions of the neural network.
arXiv Detail & Related papers (2022-02-24T18:29:39Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
Most datasets only capture a simpler subproblem and likely suffer from spurious features.
We study adversarial robustness - a local generalization property - to reveal hard, model-specific instances and spurious features.
Unlike in other applications, where perturbation models are designed around subjective notions of imperceptibility, our perturbation models are efficient and sound.
Surprisingly, with such perturbations, a sufficiently expressive neural solver does not suffer from the limitations of the accuracy-robustness trade-off common in supervised learning.
arXiv Detail & Related papers (2021-10-21T07:28:11Z) - A theory of quantum subspace diagonalization [3.248953303528541]
We show that a quantum subspace diagonalization algorithm can accurately compute the smallest eigenvalue of a large Hermitian matrix.
Our results can be of independent interest to solving eigenvalue problems outside the context of quantum computation.
arXiv Detail & Related papers (2021-10-14T16:09:07Z) - Learning ground states of quantum Hamiltonians with graph networks [6.024776891570197]
Solving for the lowest energy eigenstate of the many-body Schrodinger equation is a cornerstone problem.
Variational methods approach this problem by searching for the best approximation within a lower-dimensional variational manifold.
We use graph neural networks to define a structured variational manifold and optimize its parameters to find high quality approximations.
arXiv Detail & Related papers (2021-10-12T22:56:16Z) - Conditional physics informed neural networks [85.48030573849712]
We introduce conditional PINNs (physics informed neural networks) for estimating the solution of classes of eigenvalue problems.
We show that a single deep neural network can learn the solution of partial differential equations for an entire class of problems.
arXiv Detail & Related papers (2021-04-06T18:29:14Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z) - Eigendecomposition-Free Training of Deep Networks for Linear
Least-Square Problems [107.3868459697569]
We introduce an eigendecomposition-free approach to training a deep network.
We show that our approach is much more robust than explicit differentiation of the eigendecomposition.
Our method has better convergence properties and yields state-of-the-art results.
arXiv Detail & Related papers (2020-04-15T04:29:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.