Self-Adaptive Physics-Informed Quantum Machine Learning for Solving Differential Equations
- URL: http://arxiv.org/abs/2312.09215v2
- Date: Thu, 24 Oct 2024 12:43:52 GMT
- Title: Self-Adaptive Physics-Informed Quantum Machine Learning for Solving Differential Equations
- Authors: Abhishek Setty, Rasul Abdusalamov, Felix Motzoi,
- Abstract summary: Chebyshevs have shown significant promise as an efficient tool for both classical and quantum neural networks to solve differential equations.
We adapt and generalize this framework in a quantum machine learning setting for a variety of problems.
Results indicate a promising approach to the near-term evaluation of differential equations on quantum devices.
- Score: 0.0
- License:
- Abstract: Chebyshev polynomials have shown significant promise as an efficient tool for both classical and quantum neural networks to solve linear and nonlinear differential equations. In this work, we adapt and generalize this framework in a quantum machine learning setting for a variety of problems, including the 2D Poisson's equation, second-order differential equation, system of differential equations, and nonlinear Riccati equation. In particular, we propose in the quantum setting a modified Self-Adaptive Physics-Informed Neural Network (SAPINN) approach, where self-adaptive weights are applied to problems with multi-objective loss functions. We further explore capturing correlations in our loss function using a quantum-correlated measurement, resulting in improved accuracy for initial value problems. We analyse also the use of entangling layers and their impact on the solution accuracy for second-order differential equations. The results indicate a promising approach to the near-term evaluation of differential equations on quantum devices.
Related papers
- Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - FEM-based Neural Networks for Solving Incompressible Fluid Flows and Related Inverse Problems [41.94295877935867]
numerical simulation and optimization of technical systems described by partial differential equations is expensive.
A comparatively new approach in this context is to combine the good approximation properties of neural networks with the classical finite element method.
In this paper, we extend this approach to saddle-point and non-linear fluid dynamics problems, respectively.
arXiv Detail & Related papers (2024-09-06T07:17:01Z) - Demonstration of Scalability and Accuracy of Variational Quantum Linear Solver for Computational Fluid Dynamics [0.0]
This paper presents an exploration of quantum methodologies aimed at achieving high accuracy in solving such a large system of equations.
We consider the 2D, transient, incompressible, viscous, non-linear coupled Burgers equation as a test problem.
Our findings demonstrate that our quantum methods yield results comparable in accuracy to traditional approaches.
arXiv Detail & Related papers (2024-09-05T04:42:24Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Physics-informed Neural Network: The Effect of Reparameterization in
Solving Differential Equations [0.0]
Complicated physics mostly involves difficult differential equations, which are hard to solve analytically.
In recent years, physics-informed neural networks have been shown to perform very well in solving systems with various differential equations.
arXiv Detail & Related papers (2023-01-28T07:53:26Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
Symbolic recovery of differential equations is the ambitious attempt at automating the derivation of governing equations.
We provide both necessary and sufficient conditions for a function to uniquely determine the corresponding differential equation.
We then use our results to devise numerical algorithms aiming to determine whether a function solves a differential equation uniquely.
arXiv Detail & Related papers (2022-10-15T17:32:49Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Quantum Kernel Methods for Solving Differential Equations [21.24186888129542]
We propose several approaches for solving differential equations (DEs) with quantum kernel methods.
We compose quantum models as weighted sums of kernel functions, where variables are encoded using feature maps and model derivatives are represented.
arXiv Detail & Related papers (2022-03-16T18:56:35Z) - Quantum Model-Discovery [19.90246111091863]
Quantum algorithms for solving differential equations have shown a provable advantage in the fault-tolerant quantum computing regime.
We extend the applicability of near-term quantum computers to more general scientific machine learning tasks.
Our results show a promising path to Quantum Model Discovery (QMoD) on the interface between classical and quantum machine learning approaches.
arXiv Detail & Related papers (2021-11-11T18:45:52Z) - One-Shot Transfer Learning of Physics-Informed Neural Networks [2.6084034060847894]
We present a framework for transfer learning PINNs that results in one-shot inference for linear systems of both ordinary and partial differential equations.
This means that highly accurate solutions to many unknown differential equations can be obtained instantaneously without retraining an entire network.
arXiv Detail & Related papers (2021-10-21T17:14:58Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.