論文の概要: Efficient User-Centric Privacy-Friendly and Flexible Wearable Data Aggregation and Sharing
- arxiv url: http://arxiv.org/abs/2203.00465v3
- Date: Sun, 3 Mar 2024 23:31:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 00:17:07.126119
- Title: Efficient User-Centric Privacy-Friendly and Flexible Wearable Data Aggregation and Sharing
- Title(参考訳): 効率的なユーザ中心型プライバシフレンドリーでフレキシブルなデータアグリゲーションと共有
- Authors: Khlood Jastaniah, Ning Zhang, Mustafa A. Mustafa,
- Abstract要約: ウェアラブルデバイスは個人や一般大衆にサービスを提供することができる。
クラウドプロバイダが収集するウェアラブルデータは、プライバシのリスクを引き起こす可能性がある。
我々は,SAMAという新しい,効率的で,ユーザ中心で,プライバシーに配慮した,フレキシブルなデータアグリゲーションと共有方式を提案する。
- 参考スコア(独自算出の注目度): 9.532148238768213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wearable devices can offer services to individuals and the public. However, wearable data collected by cloud providers may pose privacy risks. To reduce these risks while maintaining full functionality, healthcare systems require solutions for privacy-friendly data processing and sharing that can accommodate three main use cases: (i) data owners requesting processing of their own data, and multiple data requesters requesting data processing of (ii) a single or (iii) multiple data owners. Existing work lacks data owner access control and does not efficiently support these cases, making them unsuitable for wearable devices. To address these limitations, we propose a novel, efficient, user-centric, privacy-friendly, and flexible data aggregation and sharing scheme, named SAMA. SAMA uses a multi-key partial homomorphic encryption scheme to allow flexibility in accommodating the aggregation of data originating from a single or multiple data owners while preserving privacy during the processing. It also uses ciphertext-policy attribute-based encryption scheme to support fine-grain sharing with multiple data requesters based on user-centric access control. Formal security analysis shows that SAMA supports data confidentiality and authorisation. SAMA has also been analysed in terms of computational and communication overheads. Our experimental results demonstrate that SAMA supports privacy-preserving flexible data aggregation more efficiently than the relevant state-of-the-art solutions.
- Abstract(参考訳): ウェアラブルデバイスは個人や一般大衆にサービスを提供することができる。
しかし、クラウドプロバイダが収集するウェアラブルデータは、プライバシのリスクを引き起こす可能性がある。
完全な機能を維持しながらこれらのリスクを軽減するためには、プライバシフレンドリーなデータ処理と共有のためのソリューションが必要である。
一 自己データの処理を請求するデータ所有者及びデータ処理を請求する複数のデータ要求者
(ii)単体または単体
(iii)複数のデータ所有者。
既存の作業にはデータ所有者アクセス制御がなく、これらのケースを効率的にサポートしていないため、ウェアラブルデバイスには適さない。
これらの制約に対処するために,SAMAという新しい,効率的で,ユーザ中心で,プライバシーに配慮した,フレキシブルなデータアグリゲーションと共有方式を提案する。
SAMAはマルチキー部分同型暗号化方式を使用して、単一または複数のデータ所有者から派生したデータのアグリゲーションを調整し、処理中にプライバシを保存する柔軟性を実現する。
また、暗号文による属性ベースの暗号化スキームを使用して、ユーザ中心のアクセス制御に基づく複数のデータ要求者との微粒な共有をサポートする。
形式的セキュリティ分析は、SAMAがデータの機密性と承認をサポートすることを示している。
SAMAは計算と通信のオーバーヘッドについても分析されている。
実験の結果、SAMAは関連する最先端ソリューションよりも、より効率的にプライバシー保護可能なフレキシブルデータアグリゲーションをサポートすることが示された。
関連論文リスト
- FT-PrivacyScore: Personalized Privacy Scoring Service for Machine Learning Participation [4.772368796656325]
実際には、制御されたデータアクセスは、多くの産業や研究環境でデータプライバシを保護する主要な方法である。
我々は,FT-PrivacyScoreのプロトタイプを開発し,モデル微調整作業に参加する際のプライバシーリスクを効率よく定量的に推定できることを実証した。
論文 参考訳(メタデータ) (2024-10-30T02:41:26Z) - Masked Differential Privacy [64.32494202656801]
本稿では,差分プライバシーを適用した機密領域を制御できる「マスク型差分プライバシー(DP)」という効果的なアプローチを提案する。
提案手法はデータに基づいて選択的に動作し,DPアプリケーションや差分プライバシーをデータサンプル内の他のプライバシー技術と組み合わせることなく,非感性時間領域を定義できる。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - Towards Personal Data Sharing Autonomy:A Task-driven Data Capsule Sharing System [5.076862984714449]
本稿では、個人データ共有自律性を実現するためのデータカプセルパラダイムに基づくタスク駆動型個人データ共有システムを提案する。
具体的には,データカプセルを独立かつセキュアな個人データストレージと共有のための最小単位とする,タンパー抵抗型データカプセルカプセルカプセル化法を提案する。
論文 参考訳(メタデータ) (2024-09-27T05:13:33Z) - Privacy-Preserving Data Management using Blockchains [0.0]
データプロバイダは、データ使用量の変化によって、既存のプライバシの好みをコントロールし、更新する必要がある。
本稿では,データプロバイダがプライベートで機密性の高いデータを保存するためのブロックチェーンベースの方法論を提案する。
論文 参考訳(メタデータ) (2024-08-21T01:10:39Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
テキストの匿名化は、プライバシーを維持しながら機密データを共有するために重要である。
既存の技術は、大規模言語モデルの再識別攻撃能力の新たな課題に直面している。
本稿では,3つのLCMベースコンポーネント – プライバシ評価器,ユーティリティ評価器,最適化コンポーネント – で構成されるフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T14:28:56Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
差分プライバシ(DP)は、モデルが特定のプライバシユニットで「ほとんど区別できない」ことを保証することで、有望なソリューションを提供する。
ユーザ間でのプライバシー保護の確保に必要なアプリケーションによって動機づけられたユーザレベルのDPについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:54:32Z) - S3PHER: Secure and Searchable System for Patient-driven HEalth data shaRing [0.0]
患者と介護者の健康データを共有するための現在のシステムは、プライバシ、機密性、同意管理といった重要なセキュリティ要件を完全には解決していない。
S3PHERは、医療データを共有するための新しいアプローチであり、患者にデータにアクセスする人、データにアクセスする人、そしていつアクセスされるかを制御する。
論文 参考訳(メタデータ) (2024-04-17T13:31:50Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
フェデレーション・インストラクション・チューニング(FedIT)は、複数のデータ所有者間で協調的なトレーニングを統合することで、有望なソリューションである。
FedITは、インストラクショナルデータの不足や、トレーニングデータ抽出攻撃への露出リスクなどの制限に直面している。
本稿では,FewFedPITを提案する。このFewFedPITは,フェデレートされた数ショット学習のプライバシー保護とモデル性能を同時に向上する。
論文 参考訳(メタデータ) (2024-03-10T08:41:22Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
DPニューラルネットワークにおけるオブジェクトごとの規範と個人のプライバシ損失との関係について検討する。
プライバシ・ロス・インプット・サセプティビリティ(PLIS)と呼ばれる新しい指標を導入し、被験者のプライバシ・ロスを入力属性に適応させることを可能にした。
論文 参考訳(メタデータ) (2022-11-18T11:39:03Z) - Reasoning over Public and Private Data in Retrieval-Based Systems [29.515915401413334]
State-of-the-artシステムは、回答を生成する前に、背景コーパスからユーザ質問に関連する情報を明示的に検索する。
今日の検索システムは、コーパスが完全にアクセス可能であることを前提としているが、ユーザーはプライベートデータを公開データをホストするエンティティに公開することを望んでいないことが多い。
PAIR(Public-PRIVATE AUTOREGRESSIVE Information RetriEVAL) のプライバシ・フレームワークを,複数のプライバシ・スコープにまたがる新規検索設定のために最初に定義する。
論文 参考訳(メタデータ) (2022-03-14T13:08:51Z) - BeeTrace: A Unified Platform for Secure Contact Tracing that Breaks Data
Silos [73.84437456144994]
接触追跡は、新型コロナウイルスなどの感染症の拡散を制御する重要な方法である。
現在のソリューションでは、ビジネスデータベースや個々のデジタルデバイスに格納された大量のデータを利用できません。
データサイロを破り、プライバシーの目標を保証するために最先端の暗号化プロトコルをデプロイする統合プラットフォームであるBeeTraceを提案する。
論文 参考訳(メタデータ) (2020-07-05T10:33:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。