論文の概要: Probabilistic 3D surface reconstruction from sparse MRI information
- arxiv url: http://arxiv.org/abs/2010.02041v1
- Date: Mon, 5 Oct 2020 14:18:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 21:13:04.261225
- Title: Probabilistic 3D surface reconstruction from sparse MRI information
- Title(参考訳): スパースMRI情報からの確率的3次元表面再構成
- Authors: Katar\'ina T\'othov\'a, Sarah Parisot, Matthew Lee, Esther
Puyol-Ant\'on, Andrew King, Marc Pollefeys, Ender Konukoglu
- Abstract要約: スパース2次元MR画像データとアレータティック不確実性予測から3次元表面再構成を同時に行うための新しい確率論的深層学習手法を提案する。
本手法は,3つの準直交MR画像スライスから,限られたトレーニングセットから大きな表面メッシュを再構成することができる。
- 参考スコア(独自算出の注目度): 58.14653650521129
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Surface reconstruction from magnetic resonance (MR) imaging data is
indispensable in medical image analysis and clinical research. A reliable and
effective reconstruction tool should: be fast in prediction of accurate well
localised and high resolution models, evaluate prediction uncertainty, work
with as little input data as possible. Current deep learning state of the art
(SOTA) 3D reconstruction methods, however, often only produce shapes of limited
variability positioned in a canonical position or lack uncertainty evaluation.
In this paper, we present a novel probabilistic deep learning approach for
concurrent 3D surface reconstruction from sparse 2D MR image data and aleatoric
uncertainty prediction. Our method is capable of reconstructing large surface
meshes from three quasi-orthogonal MR imaging slices from limited training sets
whilst modelling the location of each mesh vertex through a Gaussian
distribution. Prior shape information is encoded using a built-in linear
principal component analysis (PCA) model. Extensive experiments on cardiac MR
data show that our probabilistic approach successfully assesses prediction
uncertainty while at the same time qualitatively and quantitatively outperforms
SOTA methods in shape prediction. Compared to SOTA, we are capable of properly
localising and orientating the prediction via the use of a spatially aware
neural network.
- Abstract(参考訳): 磁気共鳴画像データからの表面再構成は医用画像解析や臨床研究に欠かせない。
信頼性が高く効果的な再構築ツールは、正確な局所化および高分解能モデルの予測を高速に行い、予測の不確実性を評価し、可能な限り少ない入力データで作業する。
しかし,3次元再構成法(SOTA)の現在の深層学習状態は,標準位置に位置する限られた変動の形状や不確実性評価の欠如に限られることが多い。
本稿では,スパース2次元mr画像データとアレエータ的不確かさ予測から3次元表面再構成を同時行う新しい確率的深層学習手法を提案する。
本手法は,ガウス分布を用いて各メッシュ頂点の位置をモデル化しながら,限られたトレーニングセットから3つの準直交MR画像スライスから大きなメッシュを再構成することができる。
事前形状情報は、内蔵線形主成分分析(PCA)モデルを用いて符号化される。
心臓mrデータを用いた広範な実験により, 予測の不確かさを定量的かつ定量的に評価し, 形状予測におけるsota法を上回った。
SOTAと比較して、空間的に認識されたニューラルネットワークを用いて予測を適切に位置決めし、オリエンテーションすることができる。
関連論文リスト
- Probabilistic 3D Correspondence Prediction from Sparse Unsegmented Images [1.2179682412409507]
スパース画像データから3次元対応を予測する統一モデルであるSPI-CorrNetを提案する。
LGE MRI左房データセットとAbdomen CT-1K肝データセットを用いた実験により,スパース画像駆動SSMの精度とロバスト性の向上が示された。
論文 参考訳(メタデータ) (2024-07-02T03:56:20Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
我々は,Neural Radiance Fields (NeRF) を用いてシーン座標回帰のためのトレーニングサンプルを生成することを提案する。
レンダリングにおけるNeRFの効率にもかかわらず、レンダリングされたデータの多くはアーティファクトによって汚染されるか、最小限の情報ゲインしか含まない。
論文 参考訳(メタデータ) (2023-10-10T20:11:13Z) - Probabilistic 3D segmentation for aleatoric uncertainty quantification
in full 3D medical data [7.615431940103322]
正規化フローを付加した3次元確率的セグメンテーションフレームワークを開発した。
私たちは初めて、0.401の3D角形一般エネルギー距離(GED)と、高い0.468のハンガリー製の3D IoUを提示しました。
論文 参考訳(メタデータ) (2023-05-01T17:19:20Z) - NeurAR: Neural Uncertainty for Autonomous 3D Reconstruction [64.36535692191343]
暗黙の神経表現はオフラインの3D再構成において魅力的な結果を示しており、オンラインSLAMシステムの可能性も最近示している。
本論文は,1)新しい表現に基づく視点計画の質を評価するための基準を求めること,2)手作りではなく,異なる場面に一般化可能なデータから基準を学習すること,の2つの課題に対処する。
本手法は, TSDFを用いた変形モデルやビュープランニングなしでの再構成モデルと比較した場合, レンダリングされた画像品質と再構成された3次元モデルの幾何学的品質について, 様々な指標について有意な改善を示す。
論文 参考訳(メタデータ) (2022-07-22T10:05:36Z) - From Images to Probabilistic Anatomical Shapes: A Deep Variational
Bottleneck Approach [0.0]
3次元医用画像から直接の統計的形状モデリング(SSM)は、病理の検出、疾患の診断、人口レベルの形態解析を行うための未利用のツールである。
本稿では,これらの仮定を緩和するために,変分情報ボトルネック理論に基づく基本的枠組みを提案する。
実験により,提案手法により精度が向上し,校正精度が向上することを確認した。
論文 参考訳(メタデータ) (2022-05-13T19:39:08Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
本稿では、2つの出力ヘッドを2つの異なる構成にサブスクライブする共通のディープネットワークバックボーンを構成するMPP-Netを紹介する。
ポーズと関節のレベルで予測の不確実性を定量化するための適切な尺度を導出する。
本稿では,提案手法の総合評価を行い,ベンチマークデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2022-03-29T07:14:58Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
高度確率密度対応ネットワーク(PDC-Net+)は、精度の高い高密度対応を推定できる。
我々は、堅牢で一般化可能な不確実性予測に適したアーキテクチャと強化されたトレーニング戦略を開発する。
提案手法は,複数の挑戦的幾何マッチングと光学的フローデータセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-09-28T17:56:41Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
解剖学的構造の3次元デライン化は、医用画像解析の基本的な目標である。
ディープラーニング以前は、解剖学的制約を課し高品質の表面を作り出す統計的形状モデルはコア技術だった。
我々は,CNNの表現力とSSMの頑健さを合体させるデライン化の新しい手法であるディープ暗黙的統計的形状モデル(DISSMs)を提案する。
論文 参考訳(メタデータ) (2021-04-07T01:15:06Z) - A Deep-Learning Approach For Direct Whole-Heart Mesh Reconstruction [1.8047694351309207]
本研究では,ボリュームCTとMR画像データから心表面メッシュ全体を直接予測する深層学習に基づく新しい手法を提案する。
本手法は,高分解能,高品質の全心臓再建を実現できる有望な性能を示した。
論文 参考訳(メタデータ) (2021-02-16T00:39:43Z) - Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal
Solution Characterization for Computational Imaging [11.677576854233394]
本稿では,再構成の不確かさを定量化するために,変分深い確率的イメージング手法を提案する。
Deep Probabilistic Imagingは、未学習の深部生成モデルを用いて、未観測画像の後部分布を推定する。
論文 参考訳(メタデータ) (2020-10-27T17:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。